Step 1: Use right triangle relations.
Since \( C = 90^\circ \), we have
\[
c^2 = a^2 + b^2
\]
Step 2: Use the identity for sum of inverse tangents.
\[
\tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)
\quad \text{when } xy<1
\]
Step 3: Apply the formula.
Let
\[
x = \frac{a}{b+c}, \quad y = \frac{b}{c+a}
\]
Step 4: Compute numerator and denominator.
\[
\frac{x+y}{1-xy}
=
\frac{\frac{a}{b+c} + \frac{b}{c+a}}{1 - \frac{ab}{(b+c)(c+a)}}
\]
Step 5: Simplify using \( c^2 = a^2 + b^2 \).
After simplification,
\[
\tan^{-1}(1) = \frac{\pi}{4}
\]
Step 6: Conclusion.
Hence, the required value is \( \dfrac{\pi}{4} \).