Step 1: Add and subtract the given equations
\[
\tan x+\sin x=m,\qquad \tan x-\sin x=n
\]
Adding,
\[
2\tan x=m+n \Rightarrow \tan x=\frac{m+n}{2}
\]
Subtracting,
\[
2\sin x=m-n \Rightarrow \sin x=\frac{m-n}{2}
\]
Step 2: Use the identity \(\tan x=\dfrac{\sin x}{\cos x}\)
\[
\cos x=\frac{\sin x}{\tan x}
=\frac{(m-n)/2}{(m+n)/2}
=\frac{m-n}{m+n}
\]
Step 3: Apply the identity \(\sin^2 x+\cos^2 x=1\)
\[
\left(\frac{m-n}{2}\right)^2+\left(\frac{m-n}{m+n}\right)^2=1
\]
\[
\frac{(m-n)^2}{4}+\frac{(m-n)^2}{(m+n)^2}=1
\]
Step 4: Test the given pairs
Case (i): \((m,n)=(2,1)\)
\[
m-n=1,\quad m+n=3
\]
\[
\frac{1}{4}+\frac{1}{9}=\frac{13}{36}\neq 1
\]
So \((2,1)\) is not possible.
Case (ii): \((m,n)=(3,4)\)
\[
m-n=-1,\quad m+n=7
\]
\[
\frac{1}{4}+\frac{1}{49}=\frac{53}{196}\neq 1
\]
So \((3,4)\) is also not possible.
Final Conclusion:
Neither \((2,1)\) nor \((3,4)\) satisfies the required condition.
\[
\boxed{\text{Option (D)}}
\]