>
Exams
>
Mathematics
>
Trigonometry
>
with usual notations in triangle abc a 3 c 2 and s
Question:
With usual notations in \( \triangle ABC \), \(a = 3\), \(c = 2\) and \(\sin C = \dfrac{2}{3}\), then \(\angle A =\)
Show Hint
When \(\sin \theta = 1\), the angle must be \(90^\circ\) or \( \frac{\pi}{2} \) radians.
MHT CET - 2020
MHT CET
Updated On:
Feb 2, 2026
\( \dfrac{\pi}{4} \)
\( \dfrac{\pi}{3} \)
\( \dfrac{\pi}{2} \)
\( \dfrac{\pi}{6} \)
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
Step 1: Apply the sine rule.
Using the sine rule in \( \triangle ABC \): \[ \frac{a}{\sin A} = \frac{c}{\sin C} \]
Step 2: Substitute the given values.
\[ \frac{3}{\sin A} = \frac{2}{2/3} \]
Step 3: Simplify the equation.
\[ \frac{2}{2/3} = 3 \Rightarrow \frac{3}{\sin A} = 3 \]
Step 4: Find angle \(A\).
\[ \sin A = 1 \Rightarrow A = \frac{\pi}{2} \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Trigonometry
Let \(m\) and \(n\) be non–negative integers such that for \[ x\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right),\qquad \tan x+\sin x=m,\quad \tan x-\sin x=n. \] Then the possible ordered pair \((m,n)\) is:
JEE Main - 2026
Mathematics
Trigonometry
View Solution
Let \(\tan \left( \frac{\pi}{4} + \frac{1}{2} \cos^{-1} \frac{2}{3} \right) + \tan \left( \frac{\pi}{4} - \frac{1}{2} \sin^{-1} \frac{2}{3} \right) = k\). Then number of solution of the equation \(\sin^{-1}(kx - 1) = \sin x - \cos^{-1} x\) is/are :
JEE Main - 2026
Mathematics
Trigonometry
View Solution
In \(\Delta ABC\) if \(\frac{\tan(A-B)}{\tan A} + \frac{\sin^2 C}{\sin^2 A} = 1\) where \(A, B, C \in (0, \frac{\pi}{2})\) then
JEE Main - 2026
Mathematics
Trigonometry
View Solution
Evaluate the limit:
\[ \lim_{x \to 0} \frac{\sin(2x) - 2\sin x}{x^3} \]
JEE Main - 2026
Mathematics
Trigonometry
View Solution
The value of \( \csc 10^\circ - \sqrt{3}\sec 10^\circ \) is:
JEE Main - 2026
Mathematics
Trigonometry
View Solution
View More Questions
Questions Asked in MHT CET exam
If $ f(x) = 2x^2 - 3x + 5 $, find $ f(3) $.
MHT CET - 2025
Functions
View Solution
Evaluate the definite integral: \( \int_{-2}^{2} |x^2 - x - 2| \, dx \)
MHT CET - 2025
Definite Integral
View Solution
There are 6 boys and 4 girls. Arrange their seating arrangement on a round table such that 2 boys and 1 girl can't sit together.
MHT CET - 2025
permutations and combinations
View Solution
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]
MHT CET - 2025
Trigonometric Identities
View Solution
View More Questions