Why is a solution of \(\text{Ni(H}_2\text{O})_6^{2+}\) green while a solution of \(\text{Ni(CN)}_4^{2-}\) is colourless? (At. No. of Ni = 28)
The color of a coordination compound is largely influenced by the ligand field and the d-electron transitions of the metal ion.
In the case of \(\text{Ni(H}_2\text{O})_6^{2+}\), water is a weak field ligand that causes a small splitting of the d-orbitals in \(\text{Ni}^{2+}\). This allows the absorption of light in the visible spectrum, giving the solution a green color.
In contrast, in \(\text{Ni(CN)}_4^{2-}\), cyanide is a strong field ligand that causes a large splitting of the d-orbitals in \(\text{Ni}^{2+}\), leading to no available electronic transitions in the visible region. As a result, the solution of \(\text{Ni(CN)}_4^{2-}\) is colorless because no visible light is absorbed.
"___ how little changes in the environment can have big repercussions" Tishani Doshi in Journey to the End of the Earth gives an awakening call for man. Analyse the theme of the lesson in the light of the above statement.