Step 1: Analyze each reaction
1. Reaction (1):
The reaction involves the cleavage of the ether bond (\(\text{C} - \text{OCH}_3\)) by \(\text{HBr}\), producing phenol (\(\text{C}_6\text{H}_5 - \text{OH}\)). This reaction is possible due to the nucleophilic substitution mechanism.
2. Reaction (2):
The reaction involves the conversion of phenol (\(\text{C}_6\text{H}_5 - \text{OH}\)) to chlorobenzene (\(\text{C}_6\text{H}_5 - \text{Cl}\)) by \(\text{HCl}\). However, this reaction is \textbf{NOT} possible because the hydroxyl group in phenol is directly attached to the benzene ring, and it does not undergo nucleophilic substitution to form \(\text{C}_6\text{H}_5 - \text{Cl}\). The lone pair on oxygen in phenol makes the \(-\text{OH}\) group resistant to substitution by \(\text{HCl}\).
3. Reaction (3):
The reaction involves the hydrolysis of chlorobenzene (\(\text{C}_6\text{H}_5 - \text{Cl}\)) under high temperature and pressure in the presence of \(\text{NaOH}\). This reaction is possible via nucleophilic aromatic substitution, producing phenol (\(\text{C}_6\text{H}_5 - \text{OH}\)).
4. Reaction (4):
The reaction involves the electrophilic substitution of anisole (\(\text{C}_6\text{H}_5 - \text{OCH}_3\)) with chlorine in the presence of \(\text{AlCl}_3\). This reaction is possible, producing a mixture of ortho and para substituted products.
Step 2: Conclusion
Among the given reactions, only Reaction (2) is not possible because phenol does not undergo nucleophilic substitution with \(\text{HCl}\) to form chlorobenzene.
Final Answer: (2).
Consider the gas phase reaction: \[ CO + \frac{1}{2} O_2 \rightleftharpoons CO_2 \] At equilibrium for a particular temperature, the partial pressures of \( CO \), \( O_2 \), and \( CO_2 \) are found to be \( 10^{-6} \, {atm} \), \( 10^{-6} \, {atm} \), and \( 16 \, {atm} \), respectively. The equilibrium constant for the reaction is ......... \( \times 10^{10} \) (rounded off to one decimal place).
Molten steel at 1900 K having dissolved hydrogen needs to be vacuum degassed. The equilibrium partial pressure of hydrogen to be maintained to achieve 1 ppm (mass basis) of dissolved hydrogen is ......... Torr (rounded off to two decimal places). Given: For the hydrogen dissolution reaction in molten steel \( \left( \frac{1}{2} {H}_2(g) = [{H}] \right) \), the equilibrium constant (expressed in terms of ppm of dissolved H) is: \[ \log_{10} K_{eq} = \frac{1900}{T} + 2.4 \] 1 atm = 760 Torr.
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
If the domain of the function \( f(x) = \frac{1}{\sqrt{3x + 10 - x^2}} + \frac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \( (1 + a)^2 + b^2 \) is equal to: