Step 1: Recall condition for orthogonality.
A matrix $A$ is orthogonal if $A^T A = I$. This means that the columns (and rows) of $A$ are orthonormal vectors.
Step 2: Check Option (A).
\[
A = \begin{bmatrix} \tfrac{1}{2} & -\tfrac{\sqrt{3}}{2}
-\tfrac{\sqrt{3}}{2} & \tfrac{1}{2} \end{bmatrix}
\]
Column 1 = $\left(\tfrac{1}{2}, -\tfrac{\sqrt{3}}{2}\right)$ has length
\[
\left(\tfrac{1}{2}\right)^2 + \left(-\tfrac{\sqrt{3}}{2}\right)^2 = \tfrac{1}{4} + \tfrac{3}{4} = 1.
\]
Column 2 = $\left(-\tfrac{\sqrt{3}}{2}, \tfrac{1}{2}\right)$ also has length $1$.
Dot product = $\tfrac{1}{2}\left(-\tfrac{\sqrt{3}}{2}\right) + \left(-\tfrac{\sqrt{3}}{2}\right)\left(\tfrac{1}{2}\right) = -\tfrac{\sqrt{3}}{2} \neq 0$.
Hence not orthogonal.
Step 3: Check Option (B).
\[
B = \begin{bmatrix} \tfrac{1}{2} & -\tfrac{\sqrt{3}}{2}
\tfrac{\sqrt{3}}{2} & \tfrac{1}{2} \end{bmatrix}
\]
Column 1 = $\left(\tfrac{1}{2}, \tfrac{\sqrt{3}}{2}\right)$ length = $\tfrac{1}{4} + \tfrac{3}{4} = 1$.
Column 2 = $\left(-\tfrac{\sqrt{3}}{2}, \tfrac{1}{2}\right)$ length = $1$.
Dot product = $\tfrac{1}{2}\left(-\tfrac{\sqrt{3}}{2}\right) + \tfrac{\sqrt{3}}{2}\left(\tfrac{1}{2}\right) = 0$.
Hence columns are orthonormal ⇒ Matrix is orthogonal.
Step 4: Quickly check C and D.
- (C) Column lengths not equal to 1 ⇒ Not orthogonal.
- (D) Column lengths not unit ⇒ Not orthogonal.
\[
\boxed{\text{Correct orthogonal matrix is Option (B)}}
\]