Question:

Which one of the following matrices is orthogonal?

Show Hint

To test orthogonality quickly, check if the column vectors are unit length and mutually perpendicular (dot product zero). This is often faster than multiplying $A^T A$.
Updated On: Aug 23, 2025
  • $\begin{bmatrix} \tfrac{1}{2} & -\tfrac{\sqrt{3}}{2}
    -\tfrac{\sqrt{3}}{2} & \tfrac{1}{2} \end{bmatrix}$
  • $\begin{bmatrix} \tfrac{1}{2} & -\tfrac{\sqrt{3}}{2}
    \tfrac{\sqrt{3}}{2} & \tfrac{1}{2} \end{bmatrix}$
  • $\begin{bmatrix} \tfrac{1}{\sqrt{2}} & -\tfrac{\sqrt{3}}{2}
    -\tfrac{\sqrt{3}}{2} & \tfrac{1}{2} \end{bmatrix}$
  • $\begin{bmatrix} \tfrac{1}{\sqrt{2}} & -\tfrac{\sqrt{3}}{2}
    \tfrac{\sqrt{3}}{2} & -\tfrac{1}{\sqrt{2}} \end{bmatrix}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Recall condition for orthogonality.
A matrix $A$ is orthogonal if $A^T A = I$. This means that the columns (and rows) of $A$ are orthonormal vectors. Step 2: Check Option (A).
\[ A = \begin{bmatrix} \tfrac{1}{2} & -\tfrac{\sqrt{3}}{2}
-\tfrac{\sqrt{3}}{2} & \tfrac{1}{2} \end{bmatrix} \] Column 1 = $\left(\tfrac{1}{2}, -\tfrac{\sqrt{3}}{2}\right)$ has length \[ \left(\tfrac{1}{2}\right)^2 + \left(-\tfrac{\sqrt{3}}{2}\right)^2 = \tfrac{1}{4} + \tfrac{3}{4} = 1. \] Column 2 = $\left(-\tfrac{\sqrt{3}}{2}, \tfrac{1}{2}\right)$ also has length $1$. Dot product = $\tfrac{1}{2}\left(-\tfrac{\sqrt{3}}{2}\right) + \left(-\tfrac{\sqrt{3}}{2}\right)\left(\tfrac{1}{2}\right) = -\tfrac{\sqrt{3}}{2} \neq 0$. Hence not orthogonal. Step 3: Check Option (B).
\[ B = \begin{bmatrix} \tfrac{1}{2} & -\tfrac{\sqrt{3}}{2}
\tfrac{\sqrt{3}}{2} & \tfrac{1}{2} \end{bmatrix} \] Column 1 = $\left(\tfrac{1}{2}, \tfrac{\sqrt{3}}{2}\right)$ length = $\tfrac{1}{4} + \tfrac{3}{4} = 1$. Column 2 = $\left(-\tfrac{\sqrt{3}}{2}, \tfrac{1}{2}\right)$ length = $1$. Dot product = $\tfrac{1}{2}\left(-\tfrac{\sqrt{3}}{2}\right) + \tfrac{\sqrt{3}}{2}\left(\tfrac{1}{2}\right) = 0$. Hence columns are orthonormal ⇒ Matrix is orthogonal. Step 4: Quickly check C and D.
- (C) Column lengths not equal to 1 ⇒ Not orthogonal.
- (D) Column lengths not unit ⇒ Not orthogonal. \[ \boxed{\text{Correct orthogonal matrix is Option (B)}} \]
Was this answer helpful?
0
0

Questions Asked in GATE MT exam

View More Questions