Step 1: Recall Fourier's law of conduction.
\[
q = k \frac{\Delta T}{L}
\]
where $q$ = heat flux, $k$ = thermal conductivity, $\Delta T$ = temperature difference, $L$ = thickness.
Step 2: Substitute values.
\[
q = 400 \times \frac{(1000 - 500)}{0.4}
\]
\[
q = 400 \times \frac{500}{0.4} = 400 \times 1250
\]
\[
q = 500000 \, W m^{-2}
\]
Final Answer:
\[
\boxed{5 \times 10^5 \, W m^{-2}}
\]