A function is monotonically increasing if its derivative is non-negative (\( f'(x) \ge 0 \)) in its domain.
The domain for \( \log(1+x) \) is \( 1+x>0 \implies x>-1 \).
% Option
(1) \( f(x) = \log(1+x) - x + \frac{x^2}{2} \).
Domain: \( x>-1 \).
\( f'(x) = \frac{1}{1+x} - 1 + \frac{2x}{2} = \frac{1}{1+x} - 1 + x \)
\( f'(x) = \frac{1 - (1+x) + x(1+x)}{1+x} = \frac{1-1-x+x+x^2}{1+x} = \frac{x^2}{1+x} \).
For \( x>-1 \), \( 1+x>0 \).
Also \( x^2 \ge 0 \).
So, \( f'(x) = \frac{x^2}{1+x} \ge 0 \) for all \( x>-1 \).
Thus, \(f(x)\) is monotonically increasing in its domain.
% Option
(2) \( g(x) = 2 \tan^{-1}x - x - 1 \).
Domain: \( x \in \mathbb{R} \).
\( g'(x) = 2 \cdot \frac{1}{1+x^2} - 1 = \frac{2 - (1+x^2)}{1+x^2} = \frac{1-x^2}{1+x^2} \).
\( g'(x) \ge 0 \implies 1-x^2 \ge 0 \implies x^2 \le 1 \implies -1 \le x \le 1 \).
\(g(x)\) is not increasing for all \(x\) in its domain (e.
g.
, if \(x=2\), \(g'(2) = (1-4)/(1+4) = -3/5<0 \)).
% Option
(3) \( h(x) = 4\cos x + x \).
Domain: \( x \in \mathbb{R} \).
\( h'(x) = -4\sin x + 1 \).
If \( h'(x) \ge 0 \), then \( 1 \ge 4\sin x \implies \sin x \le 1/4 \).
This is not true for all \(x\) (e.
g.
, if \(x=\pi/2\), \( \sin x = 1 \), which is not \( \le 1/4 \)).
So \(h(x)\) is not always increasing.
% Option
(4) \( u(x) = \log(1+x) - \frac{x}{x+1} \).
Domain: \( x>-1 \).
\( u'(x) = \frac{1}{1+x} - \frac{(x+1)(1) - x(1)}{(x+1)^2} = \frac{1}{1+x} - \frac{x+1-x}{(x+1)^2} = \frac{1}{1+x} - \frac{1}{(x+1)^2} \)
\( u'(x) = \frac{(1+x)-1}{(1+x)^2} = \frac{x}{(1+x)^2} \).
For \( u'(x) \ge 0 \), we need \( x \ge 0 \) (since \( (1+x)^2>0 \) for \( x>-1 \)).
\(u(x)\) is increasing for \(x \ge 0\), but decreasing for \( -1<x<0 \).
So not monotonically increasing in its entire domain.
Therefore, only \( f(x) = \log(1+x) - x + \frac{x^2}{2} \) is monotonically increasing in its domain.
This matches option (1).