Question:

Which one of the following functions is monotonically increasing in its domain?

Show Hint

A function \(f(x)\) is monotonically increasing in an interval if \(f'(x) \ge 0\) for all \(x\) in that interval. 1. Determine the domain of the function. 2. Calculate the first derivative \(f'(x)\). 3. Analyze the sign of \(f'(x)\) in the domain. Remember derivative rules: \( \frac{d}{dx}\log u = \frac{1}{u}\frac{du}{dx} \), \( \frac{d}{dx}\tan^{-1}u = \frac{1}{1+u^2}\frac{du}{dx} \), \( \frac{d}{dx}\cos u = -\sin u \frac{du}{dx} \).
Updated On: Jun 5, 2025
  • \( f(x) = \log(1+x) - x + \frac{x^2}{2} \)
  • \( g(x) = 2 \tan^{-1}x - x - 1 \)
  • \( h(x) = 4\cos x + x \)
  • \( u(x) = \log(1+x) - \frac{x}{x+1} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

A function is monotonically increasing if its derivative is non-negative (\( f'(x) \ge 0 \)) in its domain.
The domain for \( \log(1+x) \) is \( 1+x>0 \implies x>-1 \).
% Option (1) \( f(x) = \log(1+x) - x + \frac{x^2}{2} \).
Domain: \( x>-1 \).
\( f'(x) = \frac{1}{1+x} - 1 + \frac{2x}{2} = \frac{1}{1+x} - 1 + x \) \( f'(x) = \frac{1 - (1+x) + x(1+x)}{1+x} = \frac{1-1-x+x+x^2}{1+x} = \frac{x^2}{1+x} \).
For \( x>-1 \), \( 1+x>0 \).
Also \( x^2 \ge 0 \).
So, \( f'(x) = \frac{x^2}{1+x} \ge 0 \) for all \( x>-1 \).
Thus, \(f(x)\) is monotonically increasing in its domain.
% Option (2) \( g(x) = 2 \tan^{-1}x - x - 1 \).
Domain: \( x \in \mathbb{R} \).
\( g'(x) = 2 \cdot \frac{1}{1+x^2} - 1 = \frac{2 - (1+x^2)}{1+x^2} = \frac{1-x^2}{1+x^2} \).
\( g'(x) \ge 0 \implies 1-x^2 \ge 0 \implies x^2 \le 1 \implies -1 \le x \le 1 \).
\(g(x)\) is not increasing for all \(x\) in its domain (e.
g.
, if \(x=2\), \(g'(2) = (1-4)/(1+4) = -3/5<0 \)).
% Option (3) \( h(x) = 4\cos x + x \).
Domain: \( x \in \mathbb{R} \).
\( h'(x) = -4\sin x + 1 \).
If \( h'(x) \ge 0 \), then \( 1 \ge 4\sin x \implies \sin x \le 1/4 \).
This is not true for all \(x\) (e.
g.
, if \(x=\pi/2\), \( \sin x = 1 \), which is not \( \le 1/4 \)).
So \(h(x)\) is not always increasing.
% Option (4) \( u(x) = \log(1+x) - \frac{x}{x+1} \).
Domain: \( x>-1 \).
\( u'(x) = \frac{1}{1+x} - \frac{(x+1)(1) - x(1)}{(x+1)^2} = \frac{1}{1+x} - \frac{x+1-x}{(x+1)^2} = \frac{1}{1+x} - \frac{1}{(x+1)^2} \) \( u'(x) = \frac{(1+x)-1}{(1+x)^2} = \frac{x}{(1+x)^2} \).
For \( u'(x) \ge 0 \), we need \( x \ge 0 \) (since \( (1+x)^2>0 \) for \( x>-1 \)).
\(u(x)\) is increasing for \(x \ge 0\), but decreasing for \( -1<x<0 \).
So not monotonically increasing in its entire domain.
Therefore, only \( f(x) = \log(1+x) - x + \frac{x^2}{2} \) is monotonically increasing in its domain.
This matches option (1).
Was this answer helpful?
0
0