Which one of the following complexes will have $\Delta_{0}=0$ and $\mu=5.96$ B.M.?
To solve this question, we need to determine which coordination complex has a crystal field splitting energy ($\Delta_{0}$) of zero and a magnetic moment ($\mu$) of 5.96 Bohr Magnetons (B.M.).
Let's analyze each option:
Let's evaluate each option in terms of the number of unpaired electrons:
Thus, the complex that satisfies both conditions of zero $\Delta_{0}$ (indicating a high-spin configuration) and a magnetic moment of 5.96 B.M. is:
$[\mathrm{Mn}(\mathrm{SCN})_{6}]^{4-}$
Conclusion: The correct answer is \([\mathrm{Mn}(\mathrm{SCN})_{6}]^{4-}\), as it correctly demonstrates the expected magnetic properties.
1. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4}$: - $\mathrm{Fe}^{2+} \Rightarrow 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$ - $\mathrm{CN}^{-}$ is a strong field ligand. - $\mu = 0$
2. $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$: - $\mathrm{Co}^{3+} \Rightarrow 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$ - $\mathrm{NH}_{3}$ is a strong field ligand. - $\mu = 0$
3. $\left[\mathrm{FeF}_{6}\right]^{4}$: - $\mathrm{Fe}^{2+} \Rightarrow 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$ - $\mathrm{F}^{-}$ is a weak field ligand. - $\mu = 0$
4. $\left[\mathrm{Mn}(\mathrm{SCN})_{6}\right]^{4}$: - $\mathrm{Mn}^{2+} \Rightarrow 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{0}$ - $\mathrm{SCN}^{-}$ is a weak field ligand. - $\mu = \sqrt{35} \mathrm{~BM} = 5.96 \mathrm{~BM}$ - $\Delta_{0} = 0$
Therefore, the correct answer is (4) $\left[\mathrm{Mn}(\mathrm{SCN})_{6}\right]^{4}$.
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.