Which one of the following complexes will have $\Delta_{0}=0$ and $\mu=5.96$ B.M.?
1. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4}$: - $\mathrm{Fe}^{2+} \Rightarrow 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$ - $\mathrm{CN}^{-}$ is a strong field ligand. - $\mu = 0$
2. $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$: - $\mathrm{Co}^{3+} \Rightarrow 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$ - $\mathrm{NH}_{3}$ is a strong field ligand. - $\mu = 0$
3. $\left[\mathrm{FeF}_{6}\right]^{4}$: - $\mathrm{Fe}^{2+} \Rightarrow 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$ - $\mathrm{F}^{-}$ is a weak field ligand. - $\mu = 0$
4. $\left[\mathrm{Mn}(\mathrm{SCN})_{6}\right]^{4}$: - $\mathrm{Mn}^{2+} \Rightarrow 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{0}$ - $\mathrm{SCN}^{-}$ is a weak field ligand. - $\mu = \sqrt{35} \mathrm{~BM} = 5.96 \mathrm{~BM}$ - $\Delta_{0} = 0$
Therefore, the correct answer is (4) $\left[\mathrm{Mn}(\mathrm{SCN})_{6}\right]^{4}$.
Match List-I with List-II
Choose the correct answer from the options given below :
Identify the diamagnetic octahedral complex ions from below ;
A. [Mn(CN)\(_6\)]\(^{3-}\)
B. [Co(NH\(_3\))\(_6\)]\(^{3+}\)
C. [Fe(CN)\(_6\)]\(^{4-}\)
D. [Co(H\(_2\)O)\(_3\)F\(_3\)]
Choose the correct answer from the options given below :
Number of stereoisomers possible for the complexes, $\left[\mathrm{CrCl}_{3}(\mathrm{py})_{3}\right]$ and $\left[\mathrm{CrCl}_{2}(\mathrm{ox})_{2}\right]^{3-}$ are respectively} (py = pyridine, ox = oxalate)
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
The unit of $ \sqrt{\frac{2I}{\epsilon_0 c}} $ is: (Where $ I $ is the intensity of an electromagnetic wave, and $ c $ is the speed of light)
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The density of the copper ($^{64}Cu$) nucleus is greater than that of the carbon ($^{12}C$) nucleus.
Reason (R): The nucleus of mass number A has a radius proportional to $A^{1/3}$.
In the light of the above statements, choose the most appropriate answer from the options given below: