Which one of the following complexes will have $\Delta_{0}=0$ and $\mu=5.96$ B.M.?
To solve this question, we need to determine which coordination complex has a crystal field splitting energy ($\Delta_{0}$) of zero and a magnetic moment ($\mu$) of 5.96 Bohr Magnetons (B.M.).
Let's analyze each option:
Let's evaluate each option in terms of the number of unpaired electrons:
Thus, the complex that satisfies both conditions of zero $\Delta_{0}$ (indicating a high-spin configuration) and a magnetic moment of 5.96 B.M. is:
$[\mathrm{Mn}(\mathrm{SCN})_{6}]^{4-}$
Conclusion: The correct answer is \([\mathrm{Mn}(\mathrm{SCN})_{6}]^{4-}\), as it correctly demonstrates the expected magnetic properties.
1. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4}$: - $\mathrm{Fe}^{2+} \Rightarrow 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$ - $\mathrm{CN}^{-}$ is a strong field ligand. - $\mu = 0$
2. $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$: - $\mathrm{Co}^{3+} \Rightarrow 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$ - $\mathrm{NH}_{3}$ is a strong field ligand. - $\mu = 0$
3. $\left[\mathrm{FeF}_{6}\right]^{4}$: - $\mathrm{Fe}^{2+} \Rightarrow 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$ - $\mathrm{F}^{-}$ is a weak field ligand. - $\mu = 0$
4. $\left[\mathrm{Mn}(\mathrm{SCN})_{6}\right]^{4}$: - $\mathrm{Mn}^{2+} \Rightarrow 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{0}$ - $\mathrm{SCN}^{-}$ is a weak field ligand. - $\mu = \sqrt{35} \mathrm{~BM} = 5.96 \mathrm{~BM}$ - $\Delta_{0} = 0$
Therefore, the correct answer is (4) $\left[\mathrm{Mn}(\mathrm{SCN})_{6}\right]^{4}$.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.