Which one of the following complexes will have $\Delta_{0}=0$ and $\mu=5.96$ B.M.?
1. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4}$: - $\mathrm{Fe}^{2+} \Rightarrow 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$ - $\mathrm{CN}^{-}$ is a strong field ligand. - $\mu = 0$
2. $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$: - $\mathrm{Co}^{3+} \Rightarrow 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$ - $\mathrm{NH}_{3}$ is a strong field ligand. - $\mu = 0$
3. $\left[\mathrm{FeF}_{6}\right]^{4}$: - $\mathrm{Fe}^{2+} \Rightarrow 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$ - $\mathrm{F}^{-}$ is a weak field ligand. - $\mu = 0$
4. $\left[\mathrm{Mn}(\mathrm{SCN})_{6}\right]^{4}$: - $\mathrm{Mn}^{2+} \Rightarrow 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{0}$ - $\mathrm{SCN}^{-}$ is a weak field ligand. - $\mu = \sqrt{35} \mathrm{~BM} = 5.96 \mathrm{~BM}$ - $\Delta_{0} = 0$
Therefore, the correct answer is (4) $\left[\mathrm{Mn}(\mathrm{SCN})_{6}\right]^{4}$.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: