Among the given metals, sodium (Na) has the highest oxidation potential in the alkali metal group. The oxidation potential is a measure of an element's tendency to lose electrons and undergo oxidation. In alkali metals, the higher the oxidation potential, the weaker the reducing agent the metal is. Sodium, having the highest oxidation potential in this group, is therefore the weakest reducing agent. This is because a higher oxidation potential means that sodium is less inclined to lose electrons compared to other alkali metals.
Given below are two statements.
In the light of the above statements, choose the correct answer from the options given below:
Given below are two statements:
Statement I: Nitrogen forms oxides with +1 to +5 oxidation states due to the formation of $\mathrm{p} \pi-\mathrm{p} \pi$ bond with oxygen.
Statement II: Nitrogen does not form halides with +5 oxidation state due to the absence of d-orbital in it.
In the light of the above statements, choose the correct answer from the options given below:
Given below are the pairs of group 13 elements showing their relation in terms of atomic radius. $(\mathrm{B}<\mathrm{Al}),(\mathrm{Al}<\mathrm{Ga}),(\mathrm{Ga}<\mathrm{In})$ and $(\mathrm{In}<\mathrm{Tl})$ Identify the elements present in the incorrect pair and in that pair find out the element (X) that has higher ionic radius $\left(\mathrm{M}^{3+}\right)$ than the other one. The atomic number of the element (X) is
Match List-I with List-II: List-I