To check if a statement is a tautology, simplify the logical expression step-by-step using equivalence rules (e.g., distributive, associative, and De Morgan’s laws) and test it for all possible truth values of the variables.
\(p \vee( p \wedge q )\)
\(( p \wedge( p \rightarrow q )) \rightarrow \sim q\)
\(( p \wedge q ) \rightarrow(\sim( p ) \rightarrow q )\)
\(p \rightarrow( p \wedge( p \rightarrow q ))\)
Step 1: Analyze Each Statement
(i) \( p \to (p \land (p \to q)) \):
\[p \to (p \land (p \to q)) \equiv \neg p \lor (p \land (p \to q)).\]
Using distributive property:
\[\neg p \lor (p \land (p \to q)) = (\neg p \lor p) \land (\neg p \lor (p \to q)).\]
This simplifies to:
\[\text{True} \land (\neg p \lor (\neg p \lor q)).\]
\[= \neg p \lor q.\]
This is not always true, so it is not a tautology.
(ii) \( (p \land q) \to \neg (p \to q) \):
\[(p \land q) \to \neg (p \to q) \equiv \neg (p \land q) \lor \neg (\neg p \lor q).\]
\[= (\neg p \lor \neg q) \lor (p \land \neg q).\]
This simplifies to:
\[\text{True for all cases}.\]
Hence, it is tautology
(iii) \( (p \land (p \to q)) \to \neg q \):
\[(p \land (p \to q)) \to \neg q \equiv \neg (p \land (p \to q)) \lor \neg q.\]
\[= (\neg p \lor \neg (p \to q)) \lor \neg q.\]
\[= (\neg p \lor (\neg p \land \neg q)) \lor \neg q.\]
\[= (\neg p \lor \neg q) \lor \neg q.\]
This is not always true, so it is not a tautology
(iv) \( p \lor (p \land q) \)
\[p \lor (p \land q) \equiv p.\]
This is not always true, so it is not a tautology.
Conclusion
The statement \((p \land q) \to \neg (p \to q)\) is a tautology.
Mathematical reasoning or the principle of mathematical reasoning is a part of mathematics where we decide the truth values of the given statements. These reasoning statements are common in most competitive exams like JEE and the questions are extremely easy and fun to solve.
Mathematically, reasoning can be of two major types such as: