The ratio of the longest wavelength to the shortest wavelength in Balmer series is $\frac{9}5$
Concept: The spectral lines of hydrogen atom arise due to electron transitions between energy levels. The wavelength of emitted radiation is given by:
\[ \frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \] where \( R_H = 1.097 \times 10^7 \, \text{m}^{-1} \) is the Rydberg constant, \( n_1 \) is the lower energy level and \( n_2 \) is the higher energy level.
Lyman Series: \( n_1 = 1 \), \( n_2 = 2, 3, 4, \ldots \)
Balmer Series: \( n_1 = 2 \), \( n_2 = 3, 4, 5, \ldots \)
Conclusion:
The Lyman series lies entirely in the UV region (91–122 nm) while the Balmer series lies in the visible region (365–656 nm), so there is no overlap between the two.
Correct Answer: Option (D): The wavelength ranges of Lyman and Balmer series do not overlap
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
The dual nature of matter and the dual nature of radiation were throughgoing concepts of physics. At the beginning of the 20th century, scientists untangled one of the best-kept secrets of nature – the wave-particle duplexity or the dual nature of matter and radiation.
Electronic Emission
The least energy that is needed to emit an electron from the surface of a metal can be supplied to the loose electrons.
Photoelectric Effect
The photoelectric effect is a phenomenon that involves electrons getting away from the surface of materials.
Heisenberg’s Uncertainty Principle states that both the momentum and position of a particle cannot be determined simultaneously.