To compare the speeds, we need to convert them to the same units, for example, meters per second (m/s).
(A) \( 50 \text{ meter / second} = 50 \text{ m/s} \)
(B) \( 50 \text{ meter / minute} = \frac{50 \text{ meter}}{60 \text{ second}} = \frac{5}{6} \text{ m/s} \approx 0.83 \text{ m/s} \)
(C) \( 70 \text{ km / hour} = 70 \times \frac{1000 \text{ meter}}{3600 \text{ second}} = \frac{70000}{3600} \text{ m/s} = \frac{700}{36} \text{ m/s} = \frac{175}{9} \text{ m/s} \approx 19.44 \text{ m/s} \)
(D) \( 5 \text{ km / minute} = 5 \times \frac{1000 \text{ meter}}{60 \text{ second}} = \frac{5000}{60} \text{ m/s} = \frac{500}{6} \text{ m/s} = \frac{250}{3} \text{ m/s} \approx 8(C)33 \text{ m/s} \)
Now, let's compare the values in m/s:
(A) \( 50 \text{ m/s} \)
(B) \( \approx 0.83 \text{ m/s} \)
(C) \( \approx 19.44 \text{ m/s} \)
(D) \( \approx 8(C)33 \text{ m/s} \)
The least speed is \( \approx 0.83 \text{ m/s} \), which corresponds to \( 50 \text{ meter / minute} \).
Therefore, the least speed is option (B)