Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is:
If the ratio of lengths, radii and Young's Moduli of steel and brass wires in the figure are $ a $, $ b $, and $ c $ respectively, then the corresponding ratio of increase in their lengths would be:
Two charges $ -q $ each are fixed, separated by distance $ 2d $. A third charge $ q $ of mass $ m $ placed at the mid-point is displaced slightly by $ x' (x \ll d) $ perpendicular to the line joining the two fixed charges as shown in the figure. The time period of oscillation of $ q $ will be:
Such a group of atoms is called a molecule. Obviously, there must be some force that holds these constituent atoms together in the molecules. The attractive force which holds various constituents (atoms, ions, etc.) together in different chemical species is called a chemical bond.
There are 4 types of chemical bonds which are formed by atoms or molecules to yield compounds.