Osmotic pressure, $\Pi$, is given by the formula:
\[
\Pi = \dfrac{nRT}{V}
\]
Where:
- $n$ = total moles of solute
- $R$ = ideal gas constant = 0.082 L atm K$^{-1}$ mol$^{-1}$
- $T$ = temperature in Kelvin = 27$^{\circ}$C = 300 K
- $V$ = volume in liters = 0.2 L
First, calculate the moles of Glucose and Urea:
1. Moles of Glucose:
\[
\text{Molar mass of Glucose} = 6 \times 12 + 12 \times 1 + 6 \times 16 = 180 \, \text{g/mol}
\]
\[
\text{Moles of Glucose} = \dfrac{3.6 \, \text{g}}{180 \, \text{g/mol}} = 0.02 \, \text{mol}
\]
2. Moles of Urea:
\[
\text{Molar mass of Urea} = 2 \times 14 + 4 \times 1 + 2 \times 16 = 60 \, \text{g/mol}
\]
\[
\text{Moles of Urea} = \dfrac{1.2 \, \text{g}}{60 \, \text{g/mol}} = 0.02 \, \text{mol}
\]
Total moles of solute, $n = 0.02 + 0.02 = 0.04 \, \text{mol}$
Now, using the osmotic pressure formula:
\[
\Pi = \dfrac{(0.04 \, \text{mol})(0.082 \, \text{L atm K}^{-1} \text{mol}^{-1})(300 \, \text{K})}{0.2 \, \text{L}}
\]
\[
\Pi = 4.92 \, \text{atm}
\]
Thus, the osmotic pressure of the solution is 4.92 atm.