Explanation:
Given: \[ \sin \theta = \frac{1}{2} \] and \( \theta \) is acute. This implies that \( \theta = 30^\circ \), since \( \sin 30^\circ = \frac{1}{2} \). Now, using the double angle identity for sine: \[ \sin 2\theta = 2 \sin \theta \cos \theta \] Substituting \( \sin \theta = \frac{1}{2} \) and \( \cos 30^\circ = \frac{\sqrt{3}}{2} \): \[ \sin 2\theta = 2 \times \frac{1}{2} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} \]
Hence, the value of \( \sin 2\theta \) is \(\frac{\sqrt{3}}{2}\).