Permeability is a fundamental property of a material that defines how it responds to a magnetic field.
Step 1: Define permeability
Permeability (\( \mu \)) is defined as:
\[
\mu = \frac{B}{H}
\]
Where:
- \( B \) is magnetic flux density (Tesla)
- \( H \) is magnetic field strength (A/m) Step 2: Express Tesla in SI units
\[
1\ \text{Tesla} = 1\ \text{Weber/m}^2 = \frac{\text{Volt}\cdot\text{second}}{\text{meter}^2}
\]
Also,
\[
\text{Volt} = \text{Ampere} \cdot \text{Ohm} = \text{A} \cdot \Omega
\]
Step 3: Determine SI unit of \( \mu \)
From dimensional analysis, the unit of permeability turns out to be:
\[
\mu \Rightarrow \frac{\text{Tesla}}{\text{A/m}} = \frac{\text{Weber/m}^2}{\text{A/m}} = \frac{\text{Weber}}{\text{A} \cdot \text{m}} = \frac{\text{Henry}}{\text{m}}
\]
So the correct unit is:
\[
\boxed{\text{Henry/m}}
\]