Which of the following functions is not a p.d.f. of a continuous random variable \( X \)?
\[
F_1 \text{ given by} \quad f(x) = e^{-x} \quad \text{if} \quad x \geq 0, \quad f(x) = 0 \quad \text{otherwise},
\]
\[
F_2 \text{ given by} \quad f(x) = \frac{1}{4} x^{-1/2} \quad \text{if} \quad 0 \leq x \leq 4, \quad f(x) = 0 \quad \text{otherwise},
\]
\[
F_3 \text{ given by} \quad f(x) = 6x(1 - x) \quad \text{if} \quad 0 \leq x \leq 1, \quad f(x) = 0 \quad \text{otherwise},
\]
\[
F_4 \text{ given by} \quad f(x) = \frac{x}{2} \quad \text{if} \quad -2 \leq x \leq 2, \quad f(x) = 0 \quad \text{otherwise},
\]