We are given:
\[
X \sim \text{Uniform}(0,1), \quad \text{and } Y = X^2
\]
To find the probability density function \( P_Y(y) \), we use the transformation of variables method. Since the transformation is \( Y = g(X) = X^2 \), and \( X \in (0,1] \), this implies \( Y \in (0,1] \).
We invert the transformation:
\[
X = \sqrt{Y}, \quad \text{(only positive root since \( X > 0 \))}
\]
Then the transformed PDF is:
\[
P_Y(y) = P_X(x) \cdot \left| \frac{dx}{dy} \right| = 1 \cdot \left| \frac{d}{dy} \sqrt{y} \right| = \frac{1}{2\sqrt{y}}, \quad y \in (0,1]
\]