Which of the following functions are strictly decreasing on (0,π/2)?
(A) Let f1(x) = cos x.
=f1(x) = -sin x
In interval (0,\(\frac \pi2\)), f'1(x) = -sin x<0.
\(\implies\)f1(x) = cos x is strictly decreasing in interval (0,\(\frac \pi2\)).
(B) Let f2(x) = cos2x.
f'2(x) = -2sin 2x
Now 0<x<\(\frac \pi2\) \(\implies\) 0<2x<π \(\implies\) sin 2x>0 \(\implies\) -2 sin 2x<0
f'1(x) = -2sin 2x < 0 on (0,\(\frac \pi2\))
\(\implies\)f'2(x) = cos 2x is strictly decreasing in interval (0,\(\frac \pi2\)).
(C) Let f3(x) = cos3x.
f'3(x) = -sin3x
Now, f'3(x) = 0
\(\implies\)sin3x=0\(\implies\)3x=π, as x ε (0,\(\frac \pi2\))
\(\implies\)x = \(\frac \pi2\)
The point x=\(\frac \pi3\) divides the interval (0,\(\frac \pi2\)) into two disjoint intervals
i.e., 0 (0,\(\frac \pi3\)) and (\(\frac \pi3\),\(\frac \pi2\)).
Now, in interval(0,\(\frac \pi3\)), f3(x) =-3 sin3x<0 [as 0<x<\(\frac \pi3\)=0<3x<\(\pi\)].
∴ f3 is strictly decreasing in interval (0,\(\frac \pi3\))
However, in interval (\(\frac \pi3\),\(\frac \pi2\)), f3(x)=-3sin 3x>0 [as \(\frac \pi3\)<x<\(\frac \pi2\)\(\implies\)π<3x<\(\frac {3\pi}{2}\)]
∴ f3 is strictly increasing in interval (\(\frac \pi3\),\(\frac \pi2\)).
Hence, f3 is neither increasing nor decreasing in interval (0,\(\frac \pi2\))
(D) Let f4(x) = tan x.
\(\implies\)f4(x) = sec2 x
In interval (0,\(\frac \pi2\)), f'4(x) = sec2x>0.
f4 is strictly increasing in interval (0,\(\frac \pi2\)).
Therefore, functions cos x and cos 2x are strictly decreasing in (0,\(\frac \pi2\)).
Hence, the correct answers are (A) and (B).
If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Find the least value of ‘a’ for which the function \( f(x) = x^2 + ax + 1 \) is increasing on the interval \( [1, 2] \).
Rupal, Shanu and Trisha were partners in a firm sharing profits and losses in the ratio of 4:3:1. Their Balance Sheet as at 31st March, 2024 was as follows:
(i) Trisha's share of profit was entirely taken by Shanu.
(ii) Fixed assets were found to be undervalued by Rs 2,40,000.
(iii) Stock was revalued at Rs 2,00,000.
(iv) Goodwill of the firm was valued at Rs 8,00,000 on Trisha's retirement.
(v) The total capital of the new firm was fixed at Rs 16,00,000 which was adjusted according to the new profit sharing ratio of the partners. For this necessary cash was paid off or brought in by the partners as the case may be.
Prepare Revaluation Account and Partners' Capital Accounts.
On the basis of the following hypothetical data, calculate the percentage change in Real Gross Domestic Product (GDP) in the year 2022 – 23, using 2020 – 21 as the base year.
Year | Nominal GDP | Nominal GDP (Adjusted to Base Year Price) |
2020–21 | 3,000 | 5,000 |
2022–23 | 4,000 | 6,000 |
Increasing Function:
On an interval I, a function f(x) is said to be increasing, if for any two numbers x and y in I such that x < y,
⇒ f(x) ≤ f(y)
Decreasing Function:
On an interval I, a function f(x) is said to be decreasing, if for any two numbers x and y in I such that x < y,
⇒ f(x) ≥ f(y)
Strictly Increasing Function:
On an interval I, a function f(x) is said to be strictly increasing, if for any two numbers x and y in I such that x < y,
⇒ f(x) < f(y)
Strictly Decreasing Function:
On an interval I, a function f(x) is said to be strictly decreasing, if for any two numbers x and y in I such that x < y,
⇒ f(x) > f(y)