Step 1: Checking odd function property A function \( f(x) \) is odd if \[ f(-x) = -f(x). \] Step 2: Analyzing each function - For \( f(x) = x \left( \frac{e^x -1}{e^x +1} \right) \), substituting \( -x \) does not yield \( -f(x) \). - For \( f(x) = k^x + k^{-x} + \cos x \), the presence of even and periodic terms does not satisfy odd function conditions. - For \( f(x) = \log \left( x + \sqrt{x^2 +1} \right) \), substituting \( -x \) gives \[ \log \left( -x + \sqrt{x^2 +1} \right) = -\log \left( x + \sqrt{x^2 +1} \right), \] satisfying the odd function condition.
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :