A second-order, linear, homogeneous partial differential equation has the following characteristics:
Now, let's analyze the given equations:
Thus, the correct answer is option (B).
Equations like (B) represent the Laplace equation, which is commonly encountered in fields such as physics and engineering.
Consider the ordinary differential equation:
The partial differential equation \[ \frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 2 \frac{\partial^2 u}{\partial y^2} = 0 \] is ________.
Two soils of permeabilities \( k_1 \) and \( k_2 \) are placed in a horizontal flow apparatus, as shown in the figure. For Soil 1, \( L_1 = 50 \, {cm} \), and \( k_1 = 0.055 \, {cm/s} \); for Soil 2, \( L_2 = 30 \, {cm} \), and \( k_2 = 0.035 \, {cm/s} \). The cross-sectional area of the horizontal pipe is 100 cm², and the head difference (\( \Delta h \)) is 150 cm. The discharge (in cm³/s) through the soils is ........ (rounded off to 2 decimal places).
The most suitable test for measuring the permeability of clayey soils in the laboratory is ___________.
Consider the beam ACDEB given in the figure. Which of the following statements is/are correct:
The figures, I, II, and III are parts of a sequence. Which one of the following options comes next in the sequence as IV?