A second-order, linear, homogeneous partial differential equation has the following characteristics:
Now, let's analyze the given equations:
Thus, the correct answer is option (B).
Equations like (B) represent the Laplace equation, which is commonly encountered in fields such as physics and engineering.
Consider the ordinary differential equation:
The partial differential equation \[ \frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 2 \frac{\partial^2 u}{\partial y^2} = 0 \] is ________.
For the beam and loading shown in the figure, the second derivative of the deflection curve of the beam at the mid-point of AC is given by \( \frac{\alpha M_0}{8EI} \). The value of \( \alpha \) is ........ (rounded off to the nearest integer).
In levelling between two points A and B on the opposite banks of a river, the readings are taken by setting the instrument both at A and B, as shown in the table. If the RL of A is 150.000 m, the RL of B (in m) is ....... (rounded off to 3 decimal places).