For better tuning of an LCR circuit used in communication, the following factors are important:
The quality factor is given by:
\[ Q = \frac{1}{R} \sqrt{\frac{L}{C}} \]
To maximize \( Q \), we need:
Option A: \( R = 20\Omega, L = 1.5H, C = 35\mu F \)
\[ Q = \frac{1}{20} \sqrt{\frac{1.5}{35 \times 10^{-6}}} \]
Option B: \( R = 25\Omega, L = 2.5H, C = 45\mu F \)
\[ Q = \frac{1}{25} \sqrt{\frac{2.5}{45 \times 10^{-6}}} \]
Option C: \( R = 25\Omega, L = 1.5H, C = 45\mu F \)
\[ Q = \frac{1}{25} \sqrt{\frac{1.5}{45 \times 10^{-6}}} \]
Option D: \( R = 15\Omega, L = 3.5H, C = 30\mu F \)
\[ Q = \frac{1}{15} \sqrt{\frac{3.5}{30 \times 10^{-6}}} \]
Option D has the smallest \( R \), largest \( L \), and small \( C \), which maximizes the value of \( Q \). Hence, it gives better tuning and sharper resonance.
The best combination for better tuning is \({R = 15\Omega, L = 3.5H, C = 30\mu F} \), so the correct answer is (D).
A | B | Y |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 1 |
1 | 1 | 0 |