The strength of a reducing agent is determined by the ability of its ion to donate electrons. The element Eu (Europium) in its \( \text{Eu}^{2+} \) state can easily lose an electron to form \( \text{Eu}^{3+} \), making it a strong reducing agent. The reduction process is as follows:
\(\text{Eu}^{2+} \rightarrow \text{Eu}^{3+} + e^-\)
This shows that \( \text{Eu}^{2+} \) acts as a strong reducing agent.
Thus, the correct answer is 3, which corresponds to \( \text{Eu}^{2+} \).
The Correct Answer is: $\text{Eu}^{2+}$
Sc Ti V Cr Mn Fe Co Ni Cu Zn
Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
La Hf Ta W Re Os Ir Pt Au Hg
In any transition series, as we move from left to right the d-orbitals are progressively filled and their properties vary accordingly.
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
The above are the two series of f-block elements in which the chemical properties won’t change much. The 5f-series elements are radioactive in nature and mostly are artificially synthesized in laboratories and thus much is not known about their chemical properties.
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}