After rotation of coordinate axes about the origin in the positive direction through on angle $\frac{\pi}{4}$, the new coordinates are $(X, Y)$ have relation with older coordinates $(x, y)$ is
$(x, y)=[(X \cos \theta-Y \sin \theta),(Y \cos \theta+X \sin \theta))$, where
$\theta=\frac{\pi}{4}$
$=\left(\left(\frac{X}{\sqrt{2}}-\frac{Y}{\sqrt{2}}\right),\left(\frac{Y}{\sqrt{2}}+\frac{X}{\sqrt{2}}\right)\right)$
so, $25 x^{2}+9 y^{2}=225$ becomes
$25\left(\frac{X-Y}{\sqrt{2}}\right)^{2}+9\left(\frac{X+Y}{\sqrt{2}}\right)^{2}=225$
$\Rightarrow 34 X^{2}+34 Y^{2}-32 X Y=450$
$\Rightarrow 17 X^{2}+17 Y^{2}-16 X Y=225$
On comparing, we get
$\alpha=\gamma=17, \beta=-16$ and $\delta=225$
$\therefore(\alpha+\beta+\gamma-\sqrt{\delta})^{2}$
$=(34-16-15)^{2}$
$=3^{2}=9$