When \( Q \) amount of heat is supplied to a monatomic gas, the work done by the gas is \( W \). When \( Q_1 \) amount of heat is supplied to a diatomic gas, the work done by the gas is \( 2W \). Then \( Q:Q_1 \) is:
\( 5:14 \)
Step 1: Understanding the Relationship Between Heat and Work
For an ideal gas undergoing an isoic process, the first law of thermodynamics states: \[ Q = \Delta U + W. \] For a monatomic gas: \[ \Delta U = \frac{3}{2} nR \Delta T, \quad W = nR \Delta T. \] Thus, the heat supplied: \[ Q = \Delta U + W = \frac{3}{2} nR \Delta T + nR \Delta T = \frac{5}{2} nR \Delta T. \] For a diatomic gas: \[ \Delta U = \frac{5}{2} nR \Delta T, \quad W = 2nR \Delta T. \] Thus, the heat supplied: \[ Q_1 = \Delta U + W = \frac{5}{2} nR \Delta T + 2nR \Delta T = \frac{9}{2} nR \Delta T. \]
Step 2: Ratio Calculation
\[ \frac{Q}{Q_1} = \frac{\frac{5}{2} nR \Delta T}{\frac{9}{2} nR \Delta T} = \frac{5}{14}. \]
Step 3: Conclusion
Thus, the ratio is: \[ \boxed{5:14}. \]
Given the function:
\[ f(x) = \frac{2x - 3}{3x - 2} \]
and if \( f_n(x) = (f \circ f \circ \ldots \circ f)(x) \) is applied \( n \) times, find \( f_{32}(x) \).
For \( n \in \mathbb{N} \), the largest positive integer that divides \( 81^n + 20n - 1 \) is \( k \). If \( S \) is the sum of all positive divisors of \( k \), then find \( S - k \).
If the real-valued function
\[ f(x) = \sin^{-1}(x^2 - 1) - 3\log_3(3^x - 2) \]is not defined for all \( x \in (-\infty, a] \cup (b, \infty) \), then what is \( 3^a + b^2 \)?