To determine the mean of \( X \), an unfair dice, we start by understanding that the probability of rolling a number \( k \) is given by \( P(X = k) = k^2 P \), where \( k = 1, 2, 3, 4, 5, 6 \). Given this, the probabilities must sum to 1:
\(\sum_{k=1}^{6} P(X=k)=1\).
This implies: \(P(1^2)+P(2^2)+P(3^2)+P(4^2)+P(5^2)+P(6^2)=1\), or:
\((1^2 \cdot P) + (2^2 \cdot P) + (3^2 \cdot P) + (4^2 \cdot P) + (5^2 \cdot P) + (6^2 \cdot P) = 1\).
Simplifying, we get:
\(1P + 4P + 9P + 16P + 25P + 36P = 1\)
\(91P = 1\)
Solving for \(P\), we have \(P = \frac{1}{91}\).
To find the mean \(E(X)\), use:
\(E(X) = \sum_{k=1}^{6} k \cdot P(X=k)\)
\[ E(X) = 1(1^2P) + 2(2^2P) + 3(3^2P) + 4(4^2P) + 5(5^2P) + 6(6^2P) \]
\[ = (1^3 \cdot P) + (2^3 \cdot P) + (3^3 \cdot P) + (4^3 \cdot P) + (5^3 \cdot P) + (6^3 \cdot P) \]
\[ = (1 + 8 + 27 + 64 + 125 + 216)P \]
\[ = 441P \]
Since \(P = \frac{1}{91}\), then:
\[ E(X) = 441 \times \frac{1}{91}\]
\[ = \frac{441}{91}\]
Thus, the mean of \( X \) is \(\frac{441}{91}\).