Let the angle of prism be \( A \) and the angle of minimum deviation be \( D \).
Given:
\[
D = \frac{A}{2}
\]
For a prism, the refractive index \( n \) is given by the formula:
\[
n = \frac{\sin \left( \frac{A + D}{2} \right)}{\sin \left( \frac{A}{2} \right)}
\]
Substitute \( D = \frac{A}{2} \) into the formula:
\[
n = \frac{\sin \left( \frac{A + \frac{A}{2}}{2} \right)}{\sin \left( \frac{A}{2} \right)} = \frac{\sin \left( \frac{3A}{4} \right)}{\sin \left( \frac{A}{2} \right)}
\]
For an equilateral prism, the angle of prism \( A = 60^\circ \). Thus:
\[
n = \frac{\sin \left( \frac{3 \times 60}{4} \right)}{\sin \left( \frac{60}{2} \right)} = \frac{\sin 45^\circ}{\sin 30^\circ}
\]
\[
n = \frac{\frac{\sqrt{2}}{2}}{\frac{1}{2}} = \sqrt{2}
\]
Thus, the refractive index of the material of the prism is \( \sqrt{2} \).