Given:
The lens maker's formula for a lens immersed in a medium is:
$\frac{1}{f} = \left( \frac{n_{\text{lens}}}{n_{\text{medium}}} - 1 \right) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)$
For liquid 1:
$\frac{1}{f_1} = \left( \frac{n_{\text{lens}}}{1.25} - 1 \right) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)$
For liquid 2:
$\frac{1}{f_2} = \left( \frac{n_{\text{lens}}}{1.5} - 1 \right) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)$
Given $\frac{f_1}{f_2} = \frac{5}{16}$, we have:
$\frac{f_2}{f_1} = \frac{16}{5}$
Using the lens maker's formula:
$\frac{f_2}{f_1} = \frac{\left( \frac{n_{\text{lens}}}{1.25} - 1 \right)}{\left( \frac{n_{\text{lens}}}{1.5} - 1 \right)} = \frac{16}{5}$
Let $n = n_{\text{lens}}$. Then:
$\frac{\frac{n}{1.25} - 1}{\frac{n}{1.5} - 1} = \frac{16}{5}$
Simplify the equation:
$\frac{\frac{4n}{5} - 1}{\frac{2n}{3} - 1} = \frac{16}{5}$
Cross-multiply:
$5 \left( \frac{4n}{5} - 1 \right) = 16 \left( \frac{2n}{3} - 1 \right)$
Simplify:
$4n - 5 = \frac{32n}{3} - 16$
Multiply through by 3 to eliminate the fraction:
$12n - 15 = 32n - 48$
Rearrange:
$-20n = -33$
Solve for $n$:
$n = \frac{33}{20} = 1.65$
$\boldsymbol{1.65}$ (Option 3)
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?