Given:
The lens maker's formula for a lens immersed in a medium is:
$\frac{1}{f} = \left( \frac{n_{\text{lens}}}{n_{\text{medium}}} - 1 \right) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)$
For liquid 1:
$\frac{1}{f_1} = \left( \frac{n_{\text{lens}}}{1.25} - 1 \right) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)$
For liquid 2:
$\frac{1}{f_2} = \left( \frac{n_{\text{lens}}}{1.5} - 1 \right) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)$
Given $\frac{f_1}{f_2} = \frac{5}{16}$, we have:
$\frac{f_2}{f_1} = \frac{16}{5}$
Using the lens maker's formula:
$\frac{f_2}{f_1} = \frac{\left( \frac{n_{\text{lens}}}{1.25} - 1 \right)}{\left( \frac{n_{\text{lens}}}{1.5} - 1 \right)} = \frac{16}{5}$
Let $n = n_{\text{lens}}$. Then:
$\frac{\frac{n}{1.25} - 1}{\frac{n}{1.5} - 1} = \frac{16}{5}$
Simplify the equation:
$\frac{\frac{4n}{5} - 1}{\frac{2n}{3} - 1} = \frac{16}{5}$
Cross-multiply:
$5 \left( \frac{4n}{5} - 1 \right) = 16 \left( \frac{2n}{3} - 1 \right)$
Simplify:
$4n - 5 = \frac{32n}{3} - 16$
Multiply through by 3 to eliminate the fraction:
$12n - 15 = 32n - 48$
Rearrange:
$-20n = -33$
Solve for $n$:
$n = \frac{33}{20} = 1.65$
$\boldsymbol{1.65}$ (Option 3)
Calculate the angle of minimum deviation of an equilateral prism. The refractive index of the prism is \(\sqrt{3}\). Calculate the angle of incidence for this case of minimum deviation also.