Step 1: Formula for traffic capacity.
The theoretical maximum capacity \( C \) is given by:
\[
C = \frac{1000 \times V}{S}
\]
where,
- \( V = 60 \, \text{kmph} = 1000 \, \text{m/min}, \)
- \( S = 13.98 \, \text{m} \) (center-to-center spacing).
Step 2: Substitution.
\[
C = \frac{1000 \times 60}{13.98} = \frac{60000}{13.98} \approx 4391.84 \, \text{veh/hr/lane}.
\]
Step 3: Conclusion.
The maximum theoretical capacity of the highway lane is 4391.84 vehicles per hour. Hence, the correct answer is (A) 4391.84.
Match LIST-I with LIST-II (adopting standard notations):\[\begin{array}{|c|c|} \hline \textbf{LIST-I (Parameter)} & \textbf{LIST-II (Formula)} \\ \hline \\ \text{A. Cubic parabola equation} & \text{IV. $\dfrac{X^3}{6RL}$} \\ \\ \hline \\ \text{B. Shift in transition curve} & \text{II. $\dfrac{L^2}{24R}$} \\ \\ \hline \\ \text{C. Length of valley curve} & \text{III. $\dfrac{N S^2}{(1.50 + 0.035S)}$} \\ \\ \hline \\ \text{D. Length of summit curve} & \text{I. $\dfrac{N S^2}{4.4}$} \\ \\ \hline \end{array}\] Choose the most appropriate match from the options given below:
Which of the following parameters are required for the design of a transition curve for a highway system?
(A) Rate of change of grade
(B) Rate of change of radial acceleration
(C) Rate of change of super elevation
(D) Rate of change of curvature
Choose the most appropriate answer from the options given below: