Step 1: Understanding traffic capacity.
Traffic capacity is the maximum number of vehicles that can pass a given point on a lane or roadway during a specified time period under prevailing conditions.
Step 2: Analysis of options.
- (A) Correct: This matches the standard definition of traffic capacity (vehicles per hour).
- (B) Incorrect: This defines traffic density, not capacity.
- (C) Incorrect: This relates to physical width, not capacity.
- (D) Incorrect: This defines speed, not capacity.
Step 3: Conclusion.
Hence, traffic capacity is correctly defined as option (A).
Match LIST-I with LIST-II (adopting standard notations):\[\begin{array}{|c|c|} \hline \textbf{LIST-I (Parameter)} & \textbf{LIST-II (Formula)} \\ \hline \\ \text{A. Cubic parabola equation} & \text{IV. $\dfrac{X^3}{6RL}$} \\ \\ \hline \\ \text{B. Shift in transition curve} & \text{II. $\dfrac{L^2}{24R}$} \\ \\ \hline \\ \text{C. Length of valley curve} & \text{III. $\dfrac{N S^2}{(1.50 + 0.035S)}$} \\ \\ \hline \\ \text{D. Length of summit curve} & \text{I. $\dfrac{N S^2}{4.4}$} \\ \\ \hline \end{array}\] Choose the most appropriate match from the options given below:
A weight of $500\,$N is held on a smooth plane inclined at $30^\circ$ to the horizontal by a force $P$ acting at $30^\circ$ to the inclined plane as shown. Then the value of force $P$ is:
A steel wire of $20$ mm diameter is bent into a circular shape of $10$ m radius. If modulus of elasticity of wire is $2\times10^{5}\ \text{N/mm}^2$, then the maximum bending stress induced in wire is: