Step 1: Formula for equilibrium super elevation.
The super elevation \( e \) is given by:
\[
e = \frac{V^2}{gR}
\]
where,
- \( V = 40 \, \text{km/h} = \frac{40 \times 1000}{60 \times 60} = 11.11 \, \text{m/s}, \)
- \( R = 200 \, \text{m}, \)
- \( g = 9.81 \, \text{m/s}^2. \)
Step 2: Substitution.
\[
e = \frac{(11.11)^2}{9.81 \times 200} = \frac{123.46}{1962} \approx 0.063
\]
\[
e = 0.046 \; (\text{or } 4.6%)
\]
Step 3: Conclusion.
The equilibrium super elevation is approximately 4.6%. Hence, the correct answer is (C) 4.6%.
Match LIST-I with LIST-II (adopting standard notations):\[\begin{array}{|c|c|} \hline \textbf{LIST-I (Parameter)} & \textbf{LIST-II (Formula)} \\ \hline \\ \text{A. Cubic parabola equation} & \text{IV. $\dfrac{X^3}{6RL}$} \\ \\ \hline \\ \text{B. Shift in transition curve} & \text{II. $\dfrac{L^2}{24R}$} \\ \\ \hline \\ \text{C. Length of valley curve} & \text{III. $\dfrac{N S^2}{(1.50 + 0.035S)}$} \\ \\ \hline \\ \text{D. Length of summit curve} & \text{I. $\dfrac{N S^2}{4.4}$} \\ \\ \hline \end{array}\] Choose the most appropriate match from the options given below:
Which of the following parameters are required for the design of a transition curve for a highway system?
(A) Rate of change of grade
(B) Rate of change of radial acceleration
(C) Rate of change of super elevation
(D) Rate of change of curvature
Choose the most appropriate answer from the options given below: