What type of isomerism is shown by the complex \([\text{Co(NH}_3)_6][\text{Cr(CN)}_6]\)?
The complex \([\text{Co(NH}_3)_6][\text{Cr(CN)}_6]\) exhibits ionization isomerism.
In ionization isomerism, two different compounds have the same molecular formula but differ in the way the ions are arranged. One of the isomers will have the ion \([\text{Cr(CN)}_6]^{3-}\) as the anion, while the other will have the ion \([\text{Co(NH}_3)_6]^{3+}\) as the anion.
The difference in the arrangement of ions leads to the formation of different ions in solution, which are responsible for the isomerism.
The Crystal Field Theory (CFT) of coordination compounds is based on the effect of different crystal fields (provided by the ligands taken as point charges) on the degeneracy of d-orbital energies of the central metal atom/ion. The splitting of the d-orbitals provides different electronic arrangements in strong and weak crystal fields. In tetrahedral coordination entity formation, the d-orbital splitting is smaller as compared to the octahedral entity.
What is crystal field splitting energy?
The Crystal Field Theory (CFT) of coordination compounds is based on the effect of different crystal fields (provided by the ligands taken as point charges) on the degeneracy of d-orbital energies of the central metal atom/ion. The splitting of the d-orbitals provides different electronic arrangements in strong and weak crystal fields. In tetrahedral coordination entity formation, the d-orbital splitting is smaller as compared to the octahedral entity.
On the basis of CFT, explain why [Ti(H$_2$O)$_6$]Cl$_3$ complex is coloured? What happens on heating the complex [Ti(H$_2$O)$_6$]Cl$_3$? Give reason.