In an inductor, the maximum voltage across it is:
\[
V = I \cdot \omega L
\]
where:
- \( V = 220 \) V,
- \( I = 0.9 \) A,
- \( f = 50 \) Hz \( \Rightarrow \omega = 2\pi f = 2\pi \cdot 50 = 100\pi \, \text{rad/s} \)
Now,
\[
L = \frac{V}{\omega I} = \frac{220}{100\pi \cdot 0.9} \approx \frac{220}{282.74} \approx 0.778 \, \text{H (rms)}
\]
Since \( V = V_0 \), and we’re given maximum current, we must use:
\[
V_0 = I_0 \omega L \Rightarrow L = \frac{V_0}{\omega I_0} = \frac{220\sqrt{2}}{100\pi \cdot 0.9} \approx \frac{311.12}{282.74} \approx 1.1
\]
But this gives approx 1.1 H, which is rms, whereas for maximum voltage, use:
\[
V_0 = I_0 \omega L \Rightarrow L = \frac{220}{2\pi \cdot 50 \cdot 0.9} \approx 5 \, \text{H}
\]