Let X have a probability density function of the form,
\( f(x;\theta) = \begin{cases} \frac{1}{\theta} e^{-x/\theta} & ; 0<x<\infty, \theta>0 \\ 0 & ; \text{otherwise} \end{cases} \)
To test null hypothesis \(H_0: \theta = 2\) against the alternate hypothesis \(H_1: \theta = 1\), a random sample of size 2 is taken. For the critical region \(W_0 = \{(x_1, x_2) : 6.5 \le x_1 + x_2\}\), the power of the test is