Step 1: Understanding the Concept:
To find the Best Critical Region (BCR) for testing a simple null hypothesis against a simple alternative, we use the Neyman-Pearson Lemma. The lemma states that the BCR is based on the likelihood ratio.
Step 2: Key Formula or Approach:
The Neyman-Pearson Lemma states that the BCR of size \(\alpha\) is the region W such that for some \(k>0\):
\[ W = \left\{ \mathbf{x} : \frac{L(\theta_1 | \mathbf{x})}{L(\theta_0 | \mathbf{x})} \ge k \right\} \]
where \(L\) is the likelihood function. We then find \(k\) such that \(P(\mathbf{X} \in W | \theta_0) = \alpha\).
Step 3: Detailed Explanation:
Here, \(\theta_0 = 1\) and \(\theta_1 = 2\). The PDF is \(f(x;\theta) = \frac{1}{\sqrt{2\pi}}e^{-(x-\theta)^2/2}\).
The likelihood function for a sample of size 2 is \(L(\theta) = f(x_1;\theta)f(x_2;\theta)\).
The likelihood ratio is:
\[ \frac{L(2)}{L(1)} = \frac{e^{-(x_1-2)^2/2}e^{-(x_2-2)^2/2}}{e^{-(x_1-1)^2/2}e^{-(x_2-1)^2/2}} = \exp\left[-\frac{1}{2}\left(\sum(x_i-2)^2 - \sum(x_i-1)^2\right)\right] \]
Let's simplify the exponent term:
\[ \sum(x_i-2)^2 - \sum(x_i-1)^2 = \sum(x_i^2-4x_i+4) - \sum(x_i^2-2x_i+1) = \sum(-2x_i+3) = -2\sum x_i + 2(3) = -2(x_1+x_2)+6 \]
The ratio test \(\frac{L(2)}{L(1)} \ge k\) becomes:
\[ \exp\left[-\frac{1}{2}(-2(x_1+x_2)+6)\right] \ge k \]
\[ \exp(x_1+x_2-3) \ge k \]
Taking the natural log of both sides:
\[ x_1+x_2-3 \ge \ln(k) \implies x_1+x_2 \ge 3+\ln(k) \]
The BCR is of the form \(x_1+x_2 \ge k'\) for some constant \(k'\).
To find \(k'\), we use the size of the test, \(\alpha\). \(P(Z>1.64) = \alpha\), which corresponds to \(\alpha \approx 0.05\).
\[ \alpha = P(\text{Reject } H_0 | H_0 \text{ is true}) = P(X_1+X_2 \ge k' | \theta=1) \]
Under \(H_0: \theta=1\), \(X_1, X_2\) are i.i.d. \(N(1, 1)\).
Let \(S = X_1+X_2\). The distribution of S is Normal with:
- Mean: \(E(S) = E(X_1) + E(X_2) = 1+1=2\)
- Variance: \(\text{Var}(S) = \text{Var}(X_1) + \text{Var}(X_2) = 1+1=2\)
So, under \(H_0\), \(S \sim N(2, 2)\).
We standardize the probability statement:
\[ P\left( \frac{S - E(S)}{\sqrt{\text{Var}(S)}} \ge \frac{k' - 2}{\sqrt{2}} \right) = \alpha \]
\[ P\left( Z \ge \frac{k' - 2}{\sqrt{2}} \right) = \alpha \]
We are given that \(P(Z \ge 1.64) = \alpha\). Therefore:
\[ \frac{k' - 2}{\sqrt{2}} = 1.64 \]
\[ k' - 2 = 1.64\sqrt{2} \approx 1.64 \times 1.4142 = 2.3193 \]
\[ k' = 2 + 2.3193 = 4.3193 \]
Rounding to two decimal places, \(k' = 4.32\).
Step 4: Final Answer:
The best critical region is \( W = \{(x_1, x_2): x_1 + x_2 \ge 4.32\} \).