Let the radius be $r$.
Area of the circle $= \pi r^2$
Circumference of the circle $= 2\pi r$
\[
\frac{\text{Area}}{\text{Circumference}} = \frac{\pi r^2}{2\pi r} = \frac{r}{2}
\Rightarrow \frac{r}{2}>7 \Rightarrow r>14
\]
So, from statement I alone, we get that $r>14$, which is a sufficient answer.
Statement II:
Diameter $\leq 32 \Rightarrow r \leq 16$
This only provides an upper bound, not an exact or narrow enough value to determine $r$. So it's not sufficient.
Thus, only statement I is sufficient.