Step 1: Recall the formula for freezing point depression.
\[ \Delta T_f = i \cdot K_f \cdot m \] where:
Step 2: Calculate \(\Delta T_f\).
The freezing point of pure water = \(0^\circ C\). Given freezing point of solution = \(-3.72^\circ C\). \[ \Delta T_f = 0 - (-3.72) = 3.72 \, K \]
Step 3: Value of \(i\) for KBr.
KBr dissociates completely in water as: \[ \text{KBr} \;\;\rightarrow\;\; \text{K}^+ + \text{Br}^- \] So, \(i = 2\).
Step 4: Substitute values in the formula.
\[ \Delta T_f = i \cdot K_f \cdot m \] \[ 3.72 = 2 \times 1.86 \times m \]
Step 5: Solve for molality.
\[ m = \frac{3.72}{2 \times 1.86} = \frac{3.72}{3.72} = 1.0 \, \text{mol kg}^{-1} \]
The molality of the solution is \[ \boxed{1.0 \, \text{mol kg}^{-1}} \]
A substance 'X' (1.5 g) dissolved in 150 g of a solvent 'Y' (molar mass = 300 g mol$^{-1}$) led to an elevation of the boiling point by 0.5 K. The relative lowering in the vapour pressure of the solvent 'Y' is $____________ \(\times 10^{-2}\). (nearest integer)
[Given : $K_{b}$ of the solvent = 5.0 K kg mol$^{-1}$]
Assume the solution to be dilute and no association or dissociation of X takes place in solution.