Given:
\[ \left( P + \frac{a}{V^2} \right)(V - b) = RT, \]
where:
- \( P \) is pressure,
- \( V \) is volume,
- \( R \) is the universal gas constant,
- \( T \) is temperature.
Step 1: Dimensions of the Given Quantities
- \( [V] = [b] \), so the dimension of \( b \) is:
\[ [b] = [L^3] \quad (\text{volume}) \]
- The dimensional formula for pressure \( P \) is:
\[ [P] = \left[\frac{F}{A}\right] = \left[\frac{MLT^{-2}}{L^2}\right] = [ML^{-1}T^{-2}]. \]
Step 2: Dimension of \( a \)
From the term \( \frac{a}{V^2} \) having the same dimension as pressure \( P \):
\[ \left[\frac{a}{V^2}\right] = [P] = [ML^{-1}T^{-2}]. \]
Thus, the dimensional formula of \( a \) is:
\[ [a] = [P] \times [V^2] = [ML^{-1}T^{-2}] \times [L^6] = [ML^5T^{-2}]. \]
Step 3: Calculating the Dimensional Formula of \( ab^{-1} \)
The dimensional formula of \( b \) is \( [L^3] \). Therefore, the dimensional formula of \( ab^{-1} \) is:
\[ ab^{-1} = \frac{[a]}{[b]} = \frac{[ML^5T^{-2}]}{[L^3]} = [ML^2T^{-2}]. \]
Therefore, the correct dimensional formula of \( ab^{-1} \) is \( [ML^2T^{-2}] \).
Match the LIST-I with LIST-II: 
Choose the correct answer from the options given below:
Match the LIST-I with LIST-II 
Choose the correct answer from the options given below:
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to