Question:

What is the area of the parabola x2=y bounded by the line y=1?

Updated On: Jun 23, 2024
  • (A) 13 square unit
  • (B) 23 square unit
  • (C) 43 square units
  • (D) 2 square units
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Explanation:
Concept:The area under the curve y=f(x) between x=a and x=b, is given by: Area =abydx
Calculation:Here,x2=y and line y=1 cut the parabolax2=1x=1 and 1
Area =11ydxHere, the area is symmetric about the y-axis, we can find the area on one side and then multiply it by 2, we will get the area,Area 1=01ydxArea 1=01x2dx=[x33]01=13This area is between y=x2 and the positive x-axis.To get the area of the shaded region, we have to subtract this area from the area of square i.e.(1×1)13=23Total Area =2×23=43 square units.Hence, the correct option is (C).
Was this answer helpful?
0
0