Mass of water \( m = 5 \) kg.
Initial temperature \( T_1 = 20 \, ^\circ\text{C} \).
Final temperature \( T_2 = 30 \, ^\circ\text{C} \).
Specific heat capacity of water \( c = 4200 \, \text{J kg}^{-1} \text{ K}^{-1} \).
The time of heating (10 minutes) is extra information if we assume all heat supplied goes into increasing internal energy and no phase change or work done.
For water (an incompressible liquid, approximately), the increase in internal energy \( \Delta U \) when its temperature changes by \( \Delta T \) is given by \( \Delta U = mc\Delta T \).
Change in temperature \( \Delta T = T_2 - T_1 = 30 \, ^\circ\text{C} - 20 \, ^\circ\text{C} = 10 \, ^\circ\text{C} \).
A temperature difference of \( 10 \, ^\circ\text{C} \) is equal to a temperature difference of \( 10 \, \text{K} \).
So, \( \Delta T = 10 \, \text{K} \).
Increase in internal energy:
\[ \Delta U = mc\Delta T = (5 \text{ kg}) \times (4200 \, \text{J kg}^{-1} \text{ K}^{-1}) \times (10 \, \text{K}) \]
\[ \Delta U = 5 \times 4200 \times 10 \, \text{J} \]
\[ \Delta U = 50 \times 4200 \, \text{J} = 210000 \, \text{J} \]
To convert Joules to kiloJoules (kJ), divide by 1000:
\[ \Delta U = \frac{210000}{1000} \, \text{kJ} = 210 \, \text{kJ} \]
This matches option (4).
The "closed vessel" implies no mass escapes.
If volume is constant and no work is done, then heat supplied = change in internal energy.