Verify A(adj A)=(adj A)A=IAII. \(\begin{bmatrix}2&3\\-4&-6\end{bmatrix}\)
A=\(\begin{bmatrix}2&3\\-4&-6\end{bmatrix}\)
we have IAI=-12-(-12)=-12+12=0
so IAII=0\(\begin{vmatrix}1&0\\0&1\end{vmatrix}\)=\(\begin{vmatrix}0&0\\0&0\end{vmatrix}\)
Now A11=-6, A12=4, A21=-3, A22=2
so adj A=\(\begin{vmatrix}-6&3\\4&2\end{vmatrix}\)
Now A(adj A)=\(\begin{bmatrix}2&3\\-4&-6\end{bmatrix}\)\(\begin{vmatrix}-6&3\\4&2\end{vmatrix}\)
=\(\begin{vmatrix}-12+12&-6+6\\24-24&12-12\end{vmatrix}\)=\(\begin{vmatrix}0&0\\0&0\end{vmatrix}\)
Also (adj A)A=\(\begin{vmatrix}-6&3\\4&2\end{vmatrix}\)\(\begin{bmatrix}2&3\\-4&-6\end{bmatrix}\)
=\(\begin{vmatrix}-12+12&-18+18\\8-8&12-12\end{vmatrix}\)
=\(\begin{vmatrix}0&0\\0&0\end{vmatrix}\)
Hence A(adj A)=(adj A)A=IAII.
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: