Verify A(adj A)=(adj A)A=IAII. \(\begin{bmatrix}2&3\\-4&-6\end{bmatrix}\)
A=\(\begin{bmatrix}2&3\\-4&-6\end{bmatrix}\)
we have IAI=-12-(-12)=-12+12=0
so IAII=0\(\begin{vmatrix}1&0\\0&1\end{vmatrix}\)=\(\begin{vmatrix}0&0\\0&0\end{vmatrix}\)
Now A11=-6, A12=4, A21=-3, A22=2
so adj A=\(\begin{vmatrix}-6&3\\4&2\end{vmatrix}\)
Now A(adj A)=\(\begin{bmatrix}2&3\\-4&-6\end{bmatrix}\)\(\begin{vmatrix}-6&3\\4&2\end{vmatrix}\)
=\(\begin{vmatrix}-12+12&-6+6\\24-24&12-12\end{vmatrix}\)=\(\begin{vmatrix}0&0\\0&0\end{vmatrix}\)
Also (adj A)A=\(\begin{vmatrix}-6&3\\4&2\end{vmatrix}\)\(\begin{bmatrix}2&3\\-4&-6\end{bmatrix}\)
=\(\begin{vmatrix}-12+12&-18+18\\8-8&12-12\end{vmatrix}\)
=\(\begin{vmatrix}0&0\\0&0\end{vmatrix}\)
Hence A(adj A)=(adj A)A=IAII.
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).