Verify A(adj A)=(adj A)A=\(\mid A \mid I\).
\(\begin{bmatrix}1&-1&2\\3&0&-2\\1&0&3\end{bmatrix}\)
A=\(\begin{bmatrix}1&-1&2\\3&0&-2\\1&0&3\end{bmatrix}\)
IAI=1(0-0)+1(9+2)+2(0-0)=11
IAII=\(\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}\begin{bmatrix}11&0&0\\0&11&0\\0&0&11\end{bmatrix}\)
Now,A11=0,A12=-(9+2)=-11, A13=0
A21=-(-3-0)=3, A22=3-2=1,A23=-(0+1)=-1
A31=2-0=2, A32=-(-2-6)=8, A33=0+3=3
therefore adj A=[032 -1118 0-13]
Now,A(adjA)= \(\begin{bmatrix}1&-1&2\\3&0&-2\\1&0&3\end{bmatrix}\begin{bmatrix}0&3&2\\-11&1&18\\0&-1&3\end{bmatrix}\)
=\(\begin{bmatrix}0+11+0&3-1-2&2-8+6\\0+0+0&9+0+2&6+0-6\\0+0+0&3+0-3&2+0+9\end{bmatrix}\)
=\(\begin{bmatrix}11&0&0\\0&11&0\\0&0&11\end{bmatrix}\)
Also ,(adjA).A=\(\begin{bmatrix}0&3&2\\-11&1&18\\0&-1&3\end{bmatrix}\begin{bmatrix}1&-1&2\\3&0&-2\\1&0&3\end{bmatrix}\)
=\(\begin{bmatrix}0+9+2&0+0+0&0-6+6\\-11+3+8&11+0+0&-22-2+24\\0-3+3&0+0+0&0+2+9\end{bmatrix}\)
=\(\begin{bmatrix}11&0&0\\0&11&0\\0&0&11\end{bmatrix}\)
Hence A(adjA)=(adj A)A=IAII.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Complete and balance the following chemical equations: (a) \[ 2MnO_4^-(aq) + 10I^-(aq) + 16H^+(aq) \rightarrow \] (b) \[ Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow \]
Balance Sheet of Chandan, Deepak and Elvish as at 31st March, 2024
Liabilities | Amount (₹) | Assets | Amount (₹) |
---|---|---|---|
Capitals: | Fixed Assets | 27,00,000 | |
Chandan | 7,00,000 | Stock | 3,00,000 |
Deepak | 5,00,000 | Debtors | 2,00,000 |
Elvish | 3,00,000 | Cash | 1,00,000 |
General Reserve | 4,50,000 | ||
Creditors | 13,50,000 | ||
Total | 33,00,000 | Total | 33,00,000 |