Step 1: A vector perpendicular to the plane of \(\vec{r_1}, \vec{r_2}\).<
A suitable vector \(\vec{r}\) is parallel to \(\vec{r_1}\times \vec{r_2}\). First find
\[
\vec{r_1}\times \vec{r_2}
=
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k}
2 -1 0
0 1 2
\end{vmatrix}.
\]
Compute:
\[
= \mathbf{i}\bigl((-1)\cdot2 -0\cdot1\bigr)
-\mathbf{j}\bigl(2\cdot2 -0\cdot0\bigr)
+\mathbf{k}\bigl(2\cdot1 -(-1)\cdot0\bigr).
\]
\[
= \mathbf{i}\,(-2)
-\mathbf{j}\,(4)
+\mathbf{k}\,(2).
\]
So \(\vec{r_1}\times \vec{r_2} = -2\,\mathbf{i} -4\,\mathbf{j} + 2\,\mathbf{k}.\)
Step 2: Let \(\vec{r}\) be a scalar multiple.
Thus \(\vec{r}=\lambda\,(-2\,\mathbf{i} -4\,\mathbf{j} +2\,\mathbf{k}).\)
Step 3: Projection on \(\vec{v}=2\mathbf{i}+\mathbf{j}+2\mathbf{k}\).
The magnitude of the projection of \(\vec{r}\) onto \(\vec{v}\) is
\[
\text{proj}_{\vec{v}}(\vec{r})
= \frac{\lvert \vec{r}\cdot \vec{v}\rvert}{\lvert\vec{v}\rvert}.
\]
We’re given this is \(1\). Now
\[
\vec{r}\cdot \vec{v}
= \lambda\,(-2\,\mathbf{i} -4\,\mathbf{j} +2\,\mathbf{k})
\,\cdot\,(2\,\mathbf{i}+\mathbf{j}+2\,\mathbf{k})
\]
\[
= \lambda\Bigl[ (-2)\cdot2 +(-4)\cdot1 + (2)\cdot2 \Bigr]
= \lambda\Bigl[-4 -4 +4\Bigr]
= \lambda\cdot(-4).
\]
So
\[
|\vec{r}\cdot \vec{v}|= |\,\lambda\cdot(-4)\,|=4|\lambda|.
\]
Next, \(\lvert \vec{v}\rvert=\sqrt{2^2 +1^2 +2^2}=\sqrt{4+1+4}= \sqrt{9}=3.\)
Hence:
\[
\text{proj}_{\vec{v}}(\vec{r})
= \frac{4|\lambda|}{3}
=1
\;\;\Longrightarrow\;\;
|\lambda|
=\frac{3}{4}.
\]
We can assume \(\lambda >0\) if direction is not specifically reversed. So \(\lambda=\tfrac{3}{4}\).
Step 4: \(\lvert \vec{r}\rvert\).
\[
\vec{r}=\tfrac34(-2\,\mathbf{i}-4\,\mathbf{j}+2\,\mathbf{k}).
\]
Hence
\[
\lvert \vec{r}\rvert
= \left|\tfrac{3}{4}\right|\;\sqrt{(-2)^2+(-4)^2+(2)^2}
= \frac{3}{4}\;\sqrt{4+16+4}
= \frac{3}{4}\;\sqrt{24}
= \frac{3}{4}\times 2\sqrt{6}
= \frac{3\sqrt{6}}{2}.
\]
Therefore \(\boxed{\tfrac{3\sqrt{6}}{2}}\).