Question:

\( \vec{a}, \vec{b} \) are two vectors such that \( |\vec{a}|=\sqrt{3}, |\vec{b}|=\sqrt{2} \). If \( \vec{x} \) is a unit vector satisfying \( \vec{x} \times \vec{a} = \vec{b} \) then \( \vec{x} = \)

Show Hint


Vector triple product: \(\vec{A}\times(\vec{B}\times\vec{C}) = (\vec{A}\cdot\vec{C})\vec{B} - (\vec{A}\cdot\vec{B})\vec{C}\).
Given \( \vec{U} \times \vec{V} = \vec{W} \). To solve for one vector (e.g., \(\vec{U}\) or \(\vec{V}\)), take cross product with one of the known vectors. E.g., \( \vec{V} \times (\vec{U} \times \vec{V}) = \vec{V} \times \vec{W} \).
Pay close attention to the order of vectors in cross products (\(\vec{A}\times\vec{B} = -\vec{B}\times\vec{A}\)).
Updated On: May 26, 2025
  • \( \frac{1}{2}[(\vec{x}\cdot\vec{a})\vec{a} - \vec{b}\times\vec{a}] \)
  • \( \frac{1}{2}[\pm(\vec{x}\cdot\vec{a})\vec{a} + (\vec{b}\times\vec{a})] \)
  • \( \frac{1}{3}[(\vec{x}\cdot\vec{a})\vec{a} + \vec{b}\times\vec{a}] \)
  • \( \frac{1}{3}[\vec{a}\times\vec{b} \pm \vec{a}] \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Given \( \vec{x} \times \vec{a} = \vec{b} \). Also \(|\vec{x}|=1, |\vec{a}|=\sqrt{3}, |\vec{b}|=\sqrt{2}\). From \( \vec{x} \times \vec{a} = \vec{b} \), we know that \(\vec{b}\) is perpendicular to both \(\vec{x}\) and \(\vec{a}\). So, \(\vec{b} \cdot \vec{x} = 0\) and \(\vec{b} \cdot \vec{a} = 0\). Also, \(|\vec{x} \times \vec{a}| = |\vec{b}|\). \(|\vec{x}||\vec{a}|\sin\theta_{xa} = |\vec{b}|\), where \(\theta_{xa}\) is the angle between \(\vec{x}\) and \(\vec{a}\). \((1)(\sqrt{3})\sin\theta_{xa} = \sqrt{2}\). \(\sin\theta_{xa} = \frac{\sqrt{2}}{\sqrt{3}}\). Then \(\cos^2\theta_{xa} = 1 - \sin^2\theta_{xa} = 1 - \frac{2}{3} = \frac{1}{3}\). So, \(\cos\theta_{xa} = \pm \frac{1}{\sqrt{3}}\). We know \(\vec{x} \cdot \vec{a} = |\vec{x}||\vec{a}|\cos\theta_{xa} = (1)(\sqrt{3})\cos\theta_{xa} = \sqrt{3} \cos\theta_{xa}\). So, \(\vec{x} \cdot \vec{a} = \sqrt{3} (\pm \frac{1}{\sqrt{3}}) = \pm 1\). Consider the vector triple product \( \vec{a} \times (\vec{x} \times \vec{a}) \). Using the identity \(\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A}\cdot\vec{C})\vec{B} - (\vec{A}\cdot\vec{B})\vec{C}\): \( \vec{a} \times (\vec{x} \times \vec{a}) = (\vec{a}\cdot\vec{a})\vec{x} - (\vec{a}\cdot\vec{x})\vec{a} \). We are given \( \vec{x} \times \vec{a} = \vec{b} \). So, the LHS is \( \vec{a} \times \vec{b} \). Thus, \( \vec{a} \times \vec{b} = |\vec{a}|^2 \vec{x} - (\vec{a}\cdot\vec{x})\vec{a} \). We have \(|\vec{a}|=\sqrt{3}\), so \(|\vec{a}|^2 = 3\). \( \vec{a} \times \vec{b} = 3\vec{x} - (\vec{a}\cdot\vec{x})\vec{a} \). Rearrange to solve for \(\vec{x}\): \( 3\vec{x} = \vec{a} \times \vec{b} + (\vec{a}\cdot\vec{x})\vec{a} \). \( \vec{x} = \frac{1}{3} [(\vec{a}\cdot\vec{x})\vec{a} + \vec{a} \times \vec{b}] \). Note that \(\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})\). So, \( \vec{x} = \frac{1}{3} [(\vec{x}\cdot\vec{a})\vec{a} - (\vec{b} \times \vec{a})] \). This matches option (c) if we write \((\vec{a}\cdot\vec{x})\) as \((\vec{x}\cdot\vec{a})\). Option (c) is \( \frac{1}{3}[(\vec{x}\cdot\vec{a})\vec{a} + \vec{b}\times\vec{a}] \). My result: \( \vec{x} = \frac{1}{3} [(\vec{x}\cdot\vec{a})\vec{a} - (\vec{b} \times \vec{a})] \). There is a sign difference for the cross product term. Let me recheck the vector triple product expansion: \(\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A}\cdot\vec{C})\vec{B} - (\vec{A}\cdot\vec{B})\vec{C}\). Here \(\vec{A}=\vec{a}, \vec{B}=\vec{x}, \vec{C}=\vec{a}\). So, \((\vec{a}\cdot\vec{a})\vec{x} - (\vec{a}\cdot\vec{x})\vec{a}\). This is correct. LHS was \(\vec{a} \times (\vec{x} \times \vec{a}) = \vec{a} \times \vec{b}\). So, \( \vec{a} \times \vec{b} = |\vec{a}|^2 \vec{x} - (\vec{x}\cdot\vec{a})\vec{a} \). \( 3\vec{x} = \vec{a} \times \vec{b} + (\vec{x}\cdot\vec{a})\vec{a} \). \( \vec{x} = \frac{1}{3} [ (\vec{x}\cdot\vec{a})\vec{a} + \vec{a} \times \vec{b} ] \). Option (c) in the image has \( \vec{b} \times \vec{a} \). We know \(\vec{a} \times \vec{b} = - (\vec{b} \times \vec{a})\). So my derived expression is \( \vec{x} = \frac{1}{3} [ (\vec{x}\cdot\vec{a})\vec{a} - (\vec{b} \times \vec{a}) ] \). This does not match option (c) due to the sign of the cross product. Option (a) has \(\frac{1}{2}\) and \((\vec{x}\cdot\vec{a})\vec{a} - \vec{b}\times\vec{a}\). This is \( (1/|\vec{a}|^2) [(\vec{x}\cdot\vec{a})\vec{a} - \vec{b}\times\vec{a}] \) if \(|\vec{a}|^2=2\). But \(|\vec{a}|^2=3\). Let's check the image again. The checkmark is indeed on option (c) which is \( \frac{1}{3}[(\vec{x}\cdot\vec{a})\vec{a} + \vec{b}\times\vec{a}] \). This means my term \(\vec{a} \times \vec{b}\) should be \( - (\vec{b} \times \vec{a}) \). The equation was \( 3\vec{x} = (\vec{x}\cdot\vec{a})\vec{a} + \vec{a} \times \vec{b} \). To get \(+\vec{b}\times\vec{a}\) in the option, then \( \vec{a} \times \vec{b} \) must become \( -(\vec{b} \times \vec{a}) \). So the derivation should be \( 3\vec{x} = (\vec{x}\cdot\vec{a})\vec{a} - (-\vec{a} \times \vec{b}) \). No. It's simply that \(\vec{a} \times \vec{b}\) is the term. Option (c) has \( + \vec{b} \times \vec{a} \). So, if \( \vec{a} \times \vec{b} = \vec{b} \times \vec{a} \), then \(\vec{a} \times \vec{b} = \vec{0}\), meaning \(\vec{a}\) and \(\vec{b}\) are parallel. But if \(\vec{a}\) and \(\vec{b}\) are parallel, and \(\vec{x} \times \vec{a} = \vec{b}\), then \(\vec{x} \times \vec{a}\) is parallel to \(\vec{a}\). This means \(\vec{x}\) must be parallel to \(\vec{a}\). If \(\vec{x}\) is parallel to \(\vec{a}\), then \(\vec{x} \times \vec{a} = \vec{0}\), so \(\vec{b}=\vec{0}\). But \(|\vec{b}|=\sqrt{2} \neq 0\). So \(\vec{a}\) and \(\vec{b}\) are not parallel. Thus \(\vec{a} \times \vec{b} \neq \vec{0}\). And \(\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})\). The derived form \( \vec{x} = \frac{1}{3} [ (\vec{x}\cdot\vec{a})\vec{a} + \vec{a} \times \vec{b} ] \) is correct. Option (c) is \( \vec{x} = \frac{1}{3} [ (\vec{x}\cdot\vec{a})\vec{a} + \vec{b} \times \vec{a} ] \). These two are different due to \(\vec{a} \times \vec{b}\) vs \(\vec{b} \times \vec{a}\). So if option (c) is correct, my derivation has a sign error somewhere or the identity use needs care. The vector triple product is \(\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \cdot \vec{C})\vec{B} - (\vec{A} \cdot \vec{B})\vec{C}\). We used \( \vec{a} \times (\vec{x} \times \vec{a}) \). Here \(\vec{A}=\vec{a}, \vec{B}=\vec{x}, \vec{C}=\vec{a}\). So this becomes \( (\vec{a} \cdot \vec{a})\vec{x} - (\vec{a} \cdot \vec{x})\vec{a} \). This is \( |\vec{a}|^2\vec{x} - (\vec{x} \cdot \vec{a})\vec{a} \). And \( \vec{a} \times (\vec{x} \times \vec{a}) = \vec{a} \times \vec{b} \). So, \( \vec{a} \times \vec{b} = |\vec{a}|^2\vec{x} - (\vec{x} \cdot \vec{a})\vec{a} \). \( |\vec{a}|^2\vec{x} = (\vec{x} \cdot \vec{a})\vec{a} + \vec{a} \times \vec{b} \). With \(|\vec{a}|^2 = 3\), \( 3\vec{x} = (\vec{x} \cdot \vec{a})\vec{a} + \vec{a} \times \vec{b} \). \( \vec{x} = \frac{1}{3} [ (\vec{x} \cdot \vec{a})\vec{a} + \vec{a} \times \vec{b} ] \). This expression has \(+\vec{a} \times \vec{b}\). Option (c) in the image has \(+\vec{b} \times \vec{a}\). Since \(\vec{a} \times \vec{b} = - (\vec{b} \times \vec{a})\), my derived result is \( \vec{x} = \frac{1}{3} [ (\vec{x} \cdot \vec{a})\vec{a} - (\vec{b} \times \vec{a}) ] \). This means option (c) as marked correct in the image (\( \frac{1}{3}[(\vec{x}\cdot\vec{a})\vec{a} + \vec{b}\times\vec{a}] \)) must be the target, implying my \( \vec{a} \times \vec{b} \) should be replaced by \( \vec{b} \times \vec{a} \). This would require a sign flip in the derivation of \(3\vec{x}\). The vector triple product identity is correctly applied. Perhaps the initial equation was \( \vec{a} \times \vec{x} = \vec{b} \)? If \( \vec{a} \times \vec{x} = \vec{b} \). Then \( \vec{x} \times \vec{a} = -\vec{b} \). Then \( \vec{a} \times (\vec{x} \times \vec{a}) = \vec{a} \times (-\vec{b}) = -\vec{a} \times \vec{b} = \vec{b} \times \vec{a} \). And RHS remains \( |\vec{a}|^2\vec{x} - (\vec{x} \cdot \vec{a})\vec{a} \). So, \( \vec{b} \times \vec{a} = 3\vec{x} - (\vec{x} \cdot \vec{a})\vec{a} \). \( 3\vec{x} = (\vec{x} \cdot \vec{a})\vec{a} + \vec{b} \times \vec{a} \). \( \vec{x} = \frac{1}{3} [ (\vec{x} \cdot \vec{a})\vec{a} + \vec{b} \times \vec{a} ] \). This matches option (c) exactly if the original equation was \( \vec{a} \times \vec{x} = \vec{b} \). The image states \( \vec{x} \times \vec{a} = \vec{b} \). If the image is taken literally, my first derivation is correct, and option (c) has a sign error. If option (c) is correct, then the question likely intended \( \vec{a} \times \vec{x} = \vec{b} \). Assuming option (c) is the target. \[ \boxed{\frac{1}{3}[(\vec{x}\cdot\vec{a})\vec{a} + \vec{b}\times\vec{a}] \text{ (This holds if original eq was } \vec{a}\times\vec{x}=\vec{b})} \]
Was this answer helpful?
0
0