We are tasked with calculating \((1 + i)^8\), where \(i\) is the imaginary unit. We can approach this using polar form of complex numbers.
First, express \(1 + i\) in polar form:
- The modulus \(r\) of \(1 + i\) is:
\[
r = \sqrt{1^2 + 1^2} = \sqrt{2}
\]
- The argument \(\theta\) is:
\[
\theta = \tan^{-1}\left( \frac{1}{1} \right) = \frac{\pi}{4}
\]
Now, we can rewrite \(1 + i\) as:
\[
1 + i = \sqrt{2} \left( \cos\frac{\pi}{4} + i \sin\frac{\pi}{4} \right)
\]
Using De Moivre's Theorem, which states that for any complex number in polar form \(r(\cos \theta + i \sin \theta)\), the power \(n\) is given by:
\[
\left( r(\cos \theta + i \sin \theta) \right)^n = r^n \left( \cos(n \theta) + i \sin(n \theta) \right)
\]
We apply this for \(n = 8\):
\[
(1 + i)^8 = (\sqrt{2})^8 \left( \cos\left(8 \times \frac{\pi}{4}\right) + i \sin\left(8 \times \frac{\pi}{4}\right) \right)
\]
\[
= 16 \left( \cos(2\pi) + i \sin(2\pi) \right)
\]
Since \(\cos(2\pi) = 1\) and \(\sin(2\pi) = 0\), we get:
\[
(1 + i)^8 = 16 \times (1 + 0i) = 16
\]
Thus, the correct answer is (B) 16.