Using the property of determinants and without expanding, prove that: \(\begin{vmatrix}2&7&65\\3&8&75\\5&9&86\end{vmatrix}\)=0
\(\begin{vmatrix}2&7&65\\3&8&75\\5&9&86\end{vmatrix}\)
=\(\begin{vmatrix}2&7&63+2\\3&8&72+3\\5&9&81+5\end{vmatrix}\)
=\(\begin{vmatrix}2&7&63\\3&8&72\\5&9&81\end{vmatrix}+\begin{vmatrix}2&7&2\\3&8&3\\5&9&5\end{vmatrix}\)
=\(\begin{vmatrix}2&7&9(7)\\3&8&9(8)\\5&9&9(9)\end{vmatrix}+0\) [Two columns are identical]
=\(9\begin{vmatrix}2&7&7\\3&8&8\\5&9&9\end{vmatrix}\) [Two columns are identical]
=0
What is the Planning Process?
Read More: Properties of Determinants