The correct answer is:\(7units\) The vertices of ∆ABC are A(2,0),B(4,5),and C(6,3). Equation of line segment AB is \(y-0=\frac{5-0}{4-2}(x-2)\) \(2y=5x-10\) \(y=\frac{5}{2}(x-2)...(1)\) Equation of line segment BC is \(y-5=\frac{3-5}{6-4}(x-4)\) \(2y-10=-2x+8\) \(2y=-2x+18\) \(y=-x+9...(2)\) Equation of line segment CA is \(y-3=\frac{0-3}{2-6}(x-6)\) \(-4y+12=-3x+18\) \(4y=3x-6\) \(y=\frac{3}{4}(x-2)...(3)\) Area(ΔABC)=Area(ABLA)+Area(BLMCB)-Area(ACMA) \(=∫^4_2\frac{5}{2}(x-2)dx+∫^6_4(-x+9)dx-∫^6_2\frac{3}{4}(x-2)dx\) \(=\frac{5}{2}\bigg[\frac{x^2}{2}-2x\bigg]^4_2+\bigg[\frac{-x^2}{2}+9x\bigg]^6_4-\frac{3}{4}\bigg[\frac{x^2}{2}-2x\bigg]^6_2\) \(=\frac{5}{2}[8-8-2+4]+[-18+54+8-36]-\frac{3}{4}[18-12-2+4]\) \(=5+8-\frac{3}{4}(8)\) \(=13-6\) \(=7units\)