Step 1: Rearranging the equation of the ellipse.
The given ellipse equation is:
\[
\frac{x^2}{16} + \frac{y^2}{4} = 1.
\]
Solving for \( y \):
\[
\frac{y^2}{4} = 1 - \frac{x^2}{16}
\]
\[
y^2 = 4 - \frac{x^2}{4}
\]
\[
y = \pm \sqrt{4 - \frac{x^2}{4}}
\]
Step 2: Using symmetry to simplify the calculation.
Since the ellipse is symmetric about the \(x\)-axis, the required area can be found as twice the area above the \(x\)-axis:
\[
\text{Area} = 2 \int_{-2}^{2} \sqrt{4 - \frac{x^2}{4}} \, dx
\]
Using symmetry about the \(y\)-axis:
\[
\text{Area} = 4 \int_{0}^{2} \sqrt{4 - \frac{x^2}{4}} \, dx
\]
Step 3: Substitution for simplification.
Let:
\[
u = 4 - \frac{x^2}{4}, \quad \text{so} \quad du = -\frac{x}{2} \, dx \quad \text{and} \quad x \, dx = -2 \, du
\]
Changing the limits: when \( x = 0 \), \( u = 4 \), and when \( x = 2 \), \( u = 3 \).
Thus, the integral becomes:
\[
\int_{0}^{2} \sqrt{4 - \frac{x^2}{4}} \, dx = \int_{4}^{3} \sqrt{u} \cdot (-2) \, du
\]
\[
= 2 \int_{3}^{4} \sqrt{u} \, du
\]
Step 4: Evaluating the integral.
The integral of \( \sqrt{u} \) is:
\[
\int \sqrt{u} \, du = \frac{2}{3} u^{3/2}
\]
Evaluating from \( u = 3 \) to \( u = 4 \):
\[
\int_{3}^{4} \sqrt{u} \, du = \frac{2}{3} \left[ 4^{3/2} - 3^{3/2} \right]
\]
\[
= \frac{2}{3} \left( 8 - \sqrt{27} \right)
\]
Step 5: Final area calculation.
Substituting back:
\[
\text{Area} = 4 \cdot 2 \cdot \frac{2}{3} \left(8 - \sqrt{27}\right)
\]
\[
= \frac{16}{3} \left(8 - \sqrt{27}\right)
\]
Final Answer:
\[
\text{Area} = \frac{16}{3} \left(8 - \sqrt{27}\right).
\]