The equation of the ellipse is: \[ \frac{x^2}{16} + \frac{y^2}{4} = 1. \]
Rearrange to solve for \(y^2\): \[ \frac{y^2}{4} = 1 - \frac{x^2}{16}. \] \[ y^2 = 4\left(1 - \frac{x^2}{16}\right) = 4 - \frac{x^2}{4}. \] \[ y = \pm \sqrt{4 - \frac{x^2}{4}}. \]
Step 1: Use symmetry to simplify the calculation. The ellipse is symmetric about the \(x\)-axis. The area between \(x = -2\) and \(x = 2\) can be calculated as twice the area above the \(x\)-axis: \[ \text{Area} = 2 \int_{-2}^{2} \sqrt{4 - \frac{x^2}{4}} \, dx. \]
Step 2: Change the limits and integrate. Since the integrand is even (symmetric about the \(y\)-axis), we can further simplify: \[ \text{Area} = 4 \int_{0}^{2} \sqrt{4 - \frac{x^2}{4}} \, dx. \]
Step 3: Substitution for simplification.
Let: \[ u = 4 - \frac{x^2}{4}, \quad \text{so} \quad du = -\frac{x}{2} \, dx \quad \text{and} \quad x \, dx = -2 \, du. \] When \(x = 0\), \(u = 4\), and when \(x = 2\), \(u = 4 - \frac{2^2}{4} = 3\).
The integral becomes: \[ \int_{0}^{2} \sqrt{4 - \frac{x^2}{4}} \, dx = \int_{4}^{3} \sqrt{u} \cdot (-2) \, du. \] Simplify: \[ \int_{0}^{2} \sqrt{4 - \frac{x^2}{4}} \, dx = 2 \int_{3}^{4} \sqrt{u} \, du. \]
Step 4: Evaluate the integral. The integral of \(\sqrt{u}\) is: \[ \int \sqrt{u} \, du = \frac{2}{3} u^{3/2}. \] Evaluate from \(u = 3\) to \(u = 4\): \[ \int_{3}^{4} \sqrt{u} \, du = \frac{2}{3} \left[4^{3/2} - 3^{3/2}\right]. \]
Simplify: \[ 4^{3/2} = (2^2)^{3/2} = 2^3 = 8, \quad 3^{3/2} = \sqrt{3^3} = \sqrt{27}. \]
Thus: \[ \int_{3}^{4} \sqrt{u} \, du = \frac{2}{3} \left[8 - \sqrt{27}\right]. \]
Step 5: Final area. Substitute back into the expression for the area: \[ \text{Area} = 4 \cdot 2 \cdot \frac{2}{3} \left[8 - \sqrt{27}\right] = \frac{16}{3} \left[8 - \sqrt{27}\right]. \]
Final Answer: \[ \text{Area} = \frac{16}{3} \left[8 - \sqrt{27}\right]. \]
If \( A = \begin{bmatrix} -1 & a & 2 \\ 1 & 2 & x \\ 3 & 1 & 1 \end{bmatrix} \) and \( A^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ -8 & 7 & -5 \\ b & y & 3 \end{bmatrix} \), find the value of \( (a + x) - (b + y) \).